KING COUNTY, WASHINGTON AND INCORPORATED AREAS #### Volume 2 of 4 | COMMUNITY | COMMUNITY | COMMUNITY | COMMUNITY | |------------------------------|-----------|--------------------------|---------------| | NAME | NUMBER | NAME | NUMBER | | *ALGONA, CITY OF | 530072 | *MEDINA, CITY OF | 530315 | | AUBURN, CITY OF | 530073 | *MERCER ISLAND, CITY OF | 530083 | | *BEAUX ARTS VILLAGE, TOWN OF | 530242 | MUCKLESHOOT INDIAN TRIBE | 530066 | | BELLEVUE, CITY OF | 530074 | NEWCASTLE, CITY OF | 530134 | | BLACK DIAMOND, CITY OF | 530272 | NORMANDY PARK, CITY OF | 530084 | | BOTHELL, CITY OF | 530075 | NORTH BEND, CITY OF | 530085 | | BURIEN, CITY OF | 530321 | PACIFIC, CITY OF | 530086 | | CARNATION, CITY OF | 530076 | REDMOND, CITY OF | 530087 | | *CLYDE HILL, CITY OF | 530279 | RENTON, CITY OF | 530088 | | COVINGTON, CITY OF | 530339 | SAMMAMISH, CITY OF | 530337 | | DES MOINES, CITY OF | 530077 | SEATAC, CITY OF | 590320 | | DUVALL, CITY OF | 530282 | SEATTLE, CITY OF | 530089 | | ENUMCLAW, CITY OF | 530319 | SHORELINE, CITY OF | 530327 | | FEDERAL WAY, CITY OF | 530322 | SKYKOMISH, TOWN OF | 530236 | | *HUNTS POINT, TOWN OF | 530288 | SNOQUALMIE, CITY OF | 530090 | | ISSAQUAH, CITY OF | 530079 | TUKWILA, CITY OF | 530091 | | KENMORE, CITY OF | 530336 | WOODINVILLE, CITY OF | 530324 | | KENT, CITY OF | 530080 | *YARROW POINT, TOWN OF | 530309 | | KING COUNTY, | | | | | UNINCORPORATED AREAS | 530071 | | | | KIRKLAND, CITY OF | 530081 | | | | LAKE FOREST PARK, CITY OF | 530082 | | | | *MAPLE VALLEY, CITY OF | 530078 | ANION EL CODED ONE CO | | | | | *NON-FLOODPRONE CO |)MIMILINITIES | # **Federal Emergency Management Agency** Flood Insurance Study Number 53033CV002B #### **NOTICE TO** #### FLOOD INSURANCE STUDY USERS Communities participating in the National Flood Insurance Program have established repositories of flood hazard data for floodplain management and flood insurance purposes. This Flood Insurance Study (FIS) may not contain all data available within the repository. It is advisable to contact the community repository for any additional data. The Federal Emergency Management Agency (FEMA) may revise and republish part or all of this FIS report at any time. In addition, FEMA may revise part of this FIS by a Letter of Map Revision process, which does not involve republication or redistribution of the FIS. Therefore, users should consult with community officials and to check the community repository to obtain the most current FIS report components. This FIS report was revised on (effective date to be determined). Users should refer to Section 10.0, Revisions Descriptions, for further information. Section 10.0 is intended to present the most up-to-date information for specific portions of this FIS report. Therefore, users of this FIS report should be aware that the information presented in Section 10.0 may supersede information in Section 1.0 through 9.0 of this FIS report. Effective Date: September 29, 1989 Revised Dates: May 16, 1995 May 20, 1996 March 30, 1998 November 8, 1999 December 6, 2001 April 19, 2005 #### TABLE OF CONTENTS ## Volume 1 | | | | <u>Page</u> | |-----|-------|---------------------------------|-------------| | 1.0 | INTRO | DUCTION | 1 | | | 1.1 | Purpose of Study | 1 | | | 1.2 | Authority and Acknowledgements | 1 | | | 1.3 | Coordination | | | 2.0 | AREA | Cedar River, Green RiverSTUDIED | | | | 2.1 | Scope of Study | | | | 2.2 | Community Description | 32 | | | 2.3 | Principal Flood Problems | 50
51 | #### Volume 1 | | | 2.3.4 | Revision 4 – North Fork Issaquah Creek | | |-----|-----|---------|---|----------| | | | 2.3.5 | Revision 5 – North Creek | | | | | 2.3.6 | Revision 6 – Tolt River, Upper South Fork Snoqualmie | | | | | 2.3.7 | Revision 7 – Snoqualmie River | | | | | 2.3.8 | Revision 8 – Cedar River, Green River, Kelsey Creek, Patterson Cre | | | | | | Snoqualmie River, Springbrook Creek | 53 | | | 2.4 | Flood | Protection Measures | | | | | 2.4.1 | Revision 1 – Miller Creek | | | | | 2.4.2 | Revision 2 – Snoqualmie River | 60 | | | | 2.4.3 | Revision 3 – Raging River | 60 | | | | 2.4.4 | Revision 4 – North Fork Issaquah Creek | 60 | | | | 2.4.5 | Revision 5 – North Creek | 60 | | | | 2.4.6 | Revision 6 – Tolt River, Upper South Fork Snoqualmie | 60 | | | | 2.4.7 | Revision 7 – Snoqualmie River, Issaquah Creek | 60 | | | | 2.4.8 | Revision 8 – Cedar River, Kelsey Creek, Patterson Creek, Green Market | ver60 | | 3.0 | ENG | INEERIN | NG METHODS | 62 | | | 3.1 | Hvdro | logic Analyses | 62 | | | 0.1 | 3.1.1 | Revision 1 – Miller Creek | | | | | 3.1.2 | Revision 2 – Snoqualmie River | | | | | 3.1.3 | Revision 3 – Raging River | | | | | 3.1.4 | Revision 4 – North Fork Issaquah Creek, Bear Creek, South Fork Sk | | | | | 3.1.1 | River, Middle Fork Snoqualmie River, North Fork Sno | oqualmie | | | | | River | | | | | 3.1.5 | Revision 5 – North Creek | | | | | 3.1.6 | Revision 6 – Tolt River, Upper South Fork Snoqualmie, Middle and | | | | | | South Fork Snoqualmie River | | | | | 3.1.7 | Revision 7 – Snoqualmie River, Issaquah Creek | | | | | 3.1.8 | Revision 8 – Cedar River, Kelsey Creek, Patterson Creek, Lower Sr | • | | | | | River, Springbrook Creek, Green River | 78 | | | 3.2 | Hydra | ulic Analyses | | | | | 3.2.1 | Revision 1 – Miller Creek | | | | | 3.2.2 | Revision 2 – Snoqualmie River | 100 | | | | 3.2.3 | Revision 3 – Raging River | 100 | | | | | | | #### Volume 1 | | | 3.2.4 | Revision 4 | - North Fork Issaquah Creek, Bear Creek, Evans Cre | | |------|--------------|----------------|-------------------|--|------| | | | | | Creek, South Fork Skykomish River, Middle Fork | | | | | 225 | Davisian 5 | River, North Fork Snoqualmie River | | | | | 3.2.5
3.2.6 | | North CreekTolt River, Upper South Fork Snoqualmie | | | | | 3.2.7 | | – Tolt River, Opper South Fork Shoquannie
– Snoqualmie River, Issaquah Creek | | | | | 3.2.7 | | - Shoquannie Krvet, Issaquan Creek
- Cedar River, Kelsey Creek, Patterson Creek, Lowe | | | | | 3.2.6 | Kevision 6 | River | | | | | | 3.2.8.1 | Springbrook Creek | | | | | | 3.2.8.2 | Green River | | | | | | | | | | | 3.3 | Vertic | al Datum | | 150 | | | | | | | | | 4.0 | FLOC | DPLAI | <u>N MANAGEN</u> | MENT APPLICATIONS | 153 | | | 4.1 | TT 1 | 1 ' D 1 | | 150 | | | 4.1
4.2 | | | ries | | | | 4.2 | Flood | ways | | 154 | | | | | | Volume 2 | | | | | | | | | | 5.0 | | | | <u>ON</u> | | | 6.0 | FLOC | <u>DD INSU</u> | RANCE RAT | <u>re map</u> | 251 | | 7.0 | ОТШ | D CTIII | DIEC | | 25.4 | | 7.0 | ОТП | EK SI UI | <u>лез</u> | | 234 | | 8.0 | LOCA | ATION (| OF DATA | | 254 | | 0.0 | Loci | 111011 | <u> </u> | | 25 1 | | 9.0 | BIBL | IOGRAF | PHY AND RE | EFERENCES | 254 | | | | | | | | | 10.0 | <u>REVI</u> | SION D | ESCRIPTION | <u>VS</u> | 269 | | | | | | | | | | 10.1 | | | | | | | 10.2 | | | | | | | 10.3 | | | | | | | 10.4
10.5 | | | | | | | 10.5 | | | | | | | 10.0 | | | | | | | 10.7 | | | | | | | 10.0 | 2.51111 | , 101011 | •••••• | | #### **FIGURES** | Volu | <u>me 2</u> | | | |--|-------------|---------|----| | Figure 1 – Floodway Schematic | | 2 | 50 | | TAB | <u>SLES</u> | | | | <u>Volu</u> | me 1 | | | | Table 1 – USGS Gages | | | 63 | | Table 2 – Summary of Discharge | | | | | Table 3 – Summary of Elevations | | | | | Table 4 – Manning's "n" values | | | | | Table 5 – Datum Conversion Factors | | 1 | 51 | | Volu | me 2 | | | | Table 6 – Floodway Data | | | | | Table 7 – Community Map History | | 2 | 33 | | EXH | <u>IBIT</u> | | | | Volu | <u>me 2</u> | | | | Exhibit 1 – Flood Profiles | | | | | Bear Creek | Panels | 01P-10P | | | Bear Creek Overflow Channel | Panel | 11P | | | Big Soos Creek | Panels | 12P-21P | | | Black River | Panel | 22P | | | Cedar River | Panels | 23P-34P | | | Cherry Creek | Panel | 35P | | | Coal Creek | Panels | 36P-39P | | | Des
Moines Creek | Panel | 40P | | | East Branch of West Tributary Kelsey Creek | Panels | 41P-44P | | | East Fork Issaguah Creek | Panels | 45P-47P | | #### EXHIBIT (continued) ## Volume 2 (continued) | Evans Creek | Panels | 48P-49P | |--|----------|-----------| | Volume | 3 | | | Forbes Creek | Panels | 50P-54P | | Gardiner Creek | Panel | 55P | | Gilman Boulevard Overflow Issaquah Creek | Panel | 56P | | Green River | Panels | 57P-78P | | Holder Creek | Panel | 79P | | Issaquah Creek | Panels | 80P-87P | | Kelsey Creek | Panels | 88P-95P | | Little Bear Creek | Panels | 96P-97P | | Longfellow Creek | Panels | 98P-102P | | Lower Overflow | Panel | 103P | | Lyon Creek | Panels | 104P-105P | | Maloney Creek | Panels | 106P | | May Creek | Panels | 107P-112P | | May Creek Tributary | Panel | 113P | | McAleer Creek | Panels | 114P-115P | | Mercer Creek | Panel | 116P | | Meydenbauer Creek | Panels | 117P-118P | | Middle Fork Snoqualmie River | Panels | 119P-124P | | Middle Overflow | Panel | 125P | | Mill Creek-Auburn | Panels | 126P-131P | | Mill Creek-Kent | Panels | 132P-136P | | Miller Creek | Panels | 137P-140P | | North Branch Mercer Creek (North Valley) | Panels | 141P-145P | | North Creek | Panels | 146P-147P | | North Fork Issaquah Creek | Panel | 148P | | North Fork Meydenbauer Creek | Panel | 149P | | North Fork Snoqualmie River | Panels | 150P-151P | | North Fork Thornton Creek | Panels | 152P-157P | | Patterson Creek | Panels | 158P-161P | | Patterson Creek Overflow Reach | Panel | 162P | | Raging River | Panels | 163P-170P | | Richards Creek | Panels | 171P-182P | | Volume | <u>4</u> | | | Richards Creek East Tributary | Panel | 183P | | Richards Creek West Tributary | Panel | 184P | | Right Channel Mercer Creek | Panel | 185P | | | | 1001 | #### EXHIBIT (continued) ## Volume 4 (continued) | Rolling Hills Creek | Panel | 186P | |---|--------|-----------| | Sammamish River | Panels | 187P-188P | | Snoqualmie River | Panels | 189P-204P | | Snoqualmie River Overflow Reach 1 | Panels | 205P-206P | | Snoqualmie River Overflow Reach 2 | Panels | 207P-208P | | Snoqualmie River Overflow Reach 3 | Panels | 209P-210P | | Snoqualmie River Overflow Reach 4 | Panel | 211P | | Snoqualmie River Overflow Reach 5 | Panels | 212P-213P | | Snoqualmie River Overflow Reach 6 | Panel | 214P | | South Fork Skykomish River | Panels | 215P-225P | | South Fork Snoqualmie River (Without Levee) | Panel | 226P | | South Fork Snoqualmie River (With Levee) | Panels | 227P-233P | | South Fork Snoqualmie River (Without Left Levee) | Panels | 234P-238P | | South Fork Snoqualmie River (Without Right Levee) | Panels | 239P-243P | | South Fork Thornton Creek | Panels | 244P-248P | | Springbrook Creek | Panels | 249P-253P | | SW 23 rd Street Drainage Channel | Panel | 254P | | Swamp Creek | Panels | 255P-257P | | Swamp Creek Overbank | Panel | 258P | | Thornton Creek | Panels | 259P-261P | | Tibbetts Creek | Panels | 262P-266P | | Tolt River (With Levee) | Panels | 267P-269P | | Tolt River (Without Left Levee) | Panel | 270P | | Tolt River (Without Right Levee) | Panel | 271P | | Upper North Overflow | Panel | 272P | | Upper South Overflow | Panel | 273P | | Vasa Creek | Panel | 274P | | Walker Creek | Panel | 275P | | West Fork Issaquah Creek | Panels | 276P-277P | | West Tributary Kelsey Creek | Panels | 278P-282P | | White River | Panels | 283P-284P | | White River (Left Bank Overflow) | Panel | 285P | | Yarrow Creek | Panels | 286P-287P | ## PUBLISHED SEPARATELY Flood Insurance Rate Map Index Flood Insurance Rate Maps | FLOODING SO | DURCE | FLOODWAY | | | 1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION | | | | |---------------|-----------------------|----------|-----------------|------------------|---|---------------------|-------------------|----------------------| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | BEAR CREEK | | | | | | | | | | Α | 0.06 ¹ | 258 | 744 | 2.1 | 35.3 | 34.9 ³ | 35.8 ³ | 1.0 | | В | 0.47 ¹ | 757 | 1,387 | 1.1 | 39.8 | 39.8 | 39.9 | 0.1 | | С | 0.67 ¹ | 309 | 1,108 | 1.4 | 41.8 | 41.8 | 42.1 | 0.3 | | D | 0.78 ¹ | 232 | 953 | 1.6 | 42.3 | 42.3 | 42.7 | 0.4 | | E | 0.86 ¹ | 255 | 1,359 | 1.1 | 42.4 | 42.4 | 42.9 | 0.5 | | F | 0.00^{2} | 71 | 446 | 3.4 | 45.1 | 45.1 | 46.1 | 1.0/0.04 | | G | 1,455 ² | 154 | 659 | 2.3 | 46.9 | 46.9 | 47.4 | 1.0/0.04 | | Н | 2,523 ² | 160 | 895 | 1.7 | 49.7 | 49.7 | 50.3 | 1.0/0.0 ⁴ | | 1 | 3,563 ² | 590 | 2,311 | 0.7 | 49.9 | 49.9 | 50.6 | 0.9/0.14 | | J | 4,655 ² | 747 | 2,090 | 0.7 | 50.0 | 50.0 | 50.8 | 1.0/0.0 ⁴ | | K | 6,764 ² | 415 | 709 | 1.6 | 51.5 | 51.5 | 52.4 | 0.9/0.14 | | L | 7,664 ² | 33 | 159 | 6.7 | 52.6 | 52.6 | 53.6 | 1.0/0.0 ⁴ | | M | 8,525 ² | 100 | 530 | 2.0 | 56.9 | 56.9 | 57.9 | 1.0/0.0 ⁴ | | N | 10,232 ² | 35 | 262 | 4.1 | 60.3 | 60.3 | 61.1 | $0.8/0.2^4$ | | 0 | 11,575 ² | 200 | 703 | 1.5 | 62.0 | 62.0 | 63.0 | 1.0/0.0 ⁴ | | Р | 13,713 ² | 118 | 691 | 1.4 | 66.2 | 66.2 | 67.2 | 0.9/0.14 | | Q | 16,016 ² | 125 | 596 | 1.7 | 70.7 | 70.7 | 71.4 | 0.7/0.34 | | R | 19,048 ² | 91 | 423 | 2.4 | 77.7 | 77.7 | 78.7 | 1.0/0.0 ⁴ | | S | 20,277 ² | 66 | 297 | 3.4 | 83.7 | 83.7 | 83.8 | 0.1/0.9 ⁴ | | T | 21,325 ² | 80 | 414 | 2.4 | 85.3 | 85.3 | 86.0 | 0.7/0.34 | | U | 21,980 ² | 55 | 341 | 2.9 | 86.5 | 86.5 | 87.3 | $0.8/0.2^4$ | | V | 23,059 ² | 45 | 278 | 3.6 | 89.6 | 89.6 | 90.2 | 0.7/0.34 | | W | 23,930 ² | 100 | 486 | 2.1 | 91.6 | 91.6 | 91.8 | 0.3/0.74 | | X | 25,253 ² | 85 | 236 | 2.2 | 94.9 | 94.9 | 95.4 | 0.6/0.44 | | Y | 5.54 ¹ | 34 | 179 | 2.9 | 97.8 | 97.8 | 98.6 | 0.8 | | Z | 5.67 ¹ | 41 | 176 | 3.0 | 100.8 | 100.8 | 101.5 | 0.7 | | | | | | | | | | | ¹Miles Above Mouth FEDERAL EMERGENCY MANAGEMENT AGENCY KING COUNTY, WA AND INCORPORATED AREAS | _ | _ | \sim | $\overline{}$ | a, | | , , | • | ~ | | |---|---|--------|---------------|----|----|-----|------|----------|---| | - | | () | D١ | N | Δ١ | , , | 11/2 | . | Δ | | | | | | | | | | | | **BEAR CREEK** ²Feet Above State Route 202 ³Elevation Computed Without Consideration of Backwater Effects From Sammamish River ⁴Surcharge Over Base Conditions/Available Surcharge | FLOODING SO | OURCE | | FLOODWAY | | 1-PERCENT-ANNUAL-CHANCE FLOOD
WATER SURFACE ELEVATION | | | | |---------------|-----------------------|--------|-----------------|------------------|--|---------------------|------------------|----------| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | BEAR CREEK | | | | | | | | | | AA | 5.81 | 38 | 189 | 2.8 | 103.9 | 103.9 | 104.4 | 0.5 | | AB | 5.94 | 48 | 144 | 3.5 | 106.4 | 106.4 | 106.7 | 0.3 | | AC | 5.98 | 44 | 128 | 3.9 | 107.6 | 107.6 | 107.7 | 0.1 | | AD | 6.02 | 81 | 270 | 1.9 | 108.7 | 108.7 | 108.8 | 0.1 | | AE | 6.21 | 96 | 230 | 2.2 | 113.8 | 113.8 | 114.4 | 0.6 | | AF | 6.41 | 69 | 255 | 2.0 | 122.0 | 122.0 | 122.5 | 0.5 | | AG | 6.45 | 20 | 122 | 4.1 | 122.6 | 122.6 | 123.1 | 0.5 | | AH | 6.45 | 20 | 102 | 4.9 | 122.6 | 122.6 | 123.2 | 0.6 | | Al | 6.49 | 79 | 313 | 1.6 | 123.8 | 123.8 | 124.2 | 0.4 | | AJ | 6.63 | 84 | 235 | 1.8 | 125.6 | 125.6 | 126.2 | 0.6 | | AK | 6.75 | 76 | 189 | 2.3 | 128.3 | 128.3 | 128.8 | 0.5 | | AL | 6.90 | 30 | 129 | 3.3 | 130.9 | 130.9 | 131.7 | 0.8 | | AM | 6.97 | 71 | 197 | 2.2 | 132.3 | 132.3 | 133.3 | 1.0 | | AN | 7.03 | 83 | 283 | 1.5 | 133.2 | 133.2 | 134.2 | 1.0 | | AO | 7.20 | 81 | 244 | 1.8 | 136.8 | 136.8 | 137.8 | 1.0 | | AP | 7.23 | 31 | 122 | 3.5 | 137.4 | 137.4 | 138.3 | 0.9 | | AQ | 7.23 | 31 | 139 | 3.1 | 137.7 | 137.7 | 138.6 | 0.9 | | AR | 7.29 | 49 | 143 | 3.0 | 139.4 | 139.4 | 140.0 | 0.6 | | AS | 7.37 | 29 | 107 | 4.0 | 142.0 | 142.0 | 142.3 | 0.3 | | AT | 7.42 | 47 | 212 | 2.0 | 143.0 | 143.0 | 143.5 | 0.5 | | AU | 7.60 | 23 | 56 | 7.3 | 146.4 | 146.4 | 146.7 | 0.3 | | AV | 7.67 | 34 | 105 | 3.9 | 150.5 | 150.5 | 151.3 | 0.8 | | AW | 7.76 | 42 | 140 | 2.9 | 153.8 | 153.8 | 154.1 | 0.3 | | AX | 7.84 | 33 | 121 | 3.4 | 155.9 | 155.9 | 155.9 | 0.0 | | AY | 7.88 | 9 | 36 | 11.4 | 158.5 | 158.5 | 158.5 | 0.0 | | AZ | 7.94 | 27 | 140 | 2.4 | 162.4 | 162.4 | 162.9 | 0.5 | | | | | | | | | | | ¹Miles Above Mouth | FLOODING SO | OURCE | FLOODWAY | | | 1-PERCENT-ANNUAL-CHANCE FLOOD
WATER SURFACE ELEVATION | | | | |---------------|-----------------------|----------|-----------------|------------------|--|---------------------|------------------|----------| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | BEAR CREEK | | | | | | | | | | BA | 8.10 | 39 | 92 | 3.6 | 165.1 | 165.1 | 166.0 | 0.9 | | BB | 8.16 | 19 | 76 | 4.4 | 168.4 | 168.4 | 168.5 | 0.1 | | BC | 8.16 | 19 | 85 | 3.9 | 168.8 | 168.8 | 168.9 | 0.1 | | BD | 8.21 | 46 | 149 | 2.2 | 169.9 | 169.9 | 170.1 | 0.2 | | BE | 8.34 | 29 | 74 | 4.5 | 174.4 | 174.4 | 174.9 | 0.5 | | BF | 8.54 | 44 | 130 | 2.5 | 183.9 | 183.9 | 184.0 | 0.1 | | BG | 8.70 | 84 | 262 | 1.3 | 186.6 | 186.6 | 187.1 | 0.5 | | ВН | 8.87 | 86 | 177 | 1.7 | 189.2 | 189.2 | 190.2 | 1.0 | | BI | 8.97 | 56 | 69 | 4.5 | 198.0 | 198.0 | 198.2 | 0.2 | | BJ | 9.04 | 23 | 94 | 3.3 | 204.6 | 204.6 | 204.6 | 0.0 | | BK | 9.08 | 43 | 76 | 4.1 | 206.4 | 206.4 | 206.5 | 0.1 | | BL | 9.18 | 23 | 73 | 4.2 | 215.4 | 215.4 | 215.4 | 0.0 | | BM | 9.31 | 87 | 166 | 1.9 | 222.2 | 222.2 | 222.3 | 0.1 | | BN | 9.40 | 95 | 168
 1.8 | 225.6 | 225.6 | 225.6 | 0.0 | | ВО | 9.55 | 114 | 142 | 2.2 | 232.9 | 232.9 | 232.9 | 0.0 | | BP | 9.61 | 34 | 99 | 3.1 | 235.6 | 235.6 | 235.6 | 0.0 | | BQ | 9.65 | 38 | 124 | 2.5 | 236.7 | 236.7 | 236.8 | 0.1 | | BR | 9.76 | 36 | 101 | 2.9 | 239.9 | 239.9 | 240.4 | 0.5 | | BS | 9.85 | 44 | 130 | 2.2 | 243.1 | 243.1 | 243.3 | 0.2 | | ВТ | 9.98 | 64 | 234 | 1.2 | 244.1 | 244.1 | 244.6 | 0.5 | | BU | 10.09 | 54 | 199 | 1.5 | 244.8 | 244.8 | 245.6 | 0.8 | | BV | 10.13 | 20 | 83 | 2.8 | 245.3 | 245.3 | 246.1 | 0.8 | | BW | 10.14 | 20 | 79 | 2.9 | 245.6 | 245.6 | 246.3 | 0.7 | | BX | 10.17 | 34 | 111 | 2.1 | 246.4 | 246.4 | 247.0 | 0.6 | | BY | 10.23 | 31 | 118 | 1.9 | 248.6 | 248.6 | 249.1 | 0.5 | | BZ | 10.32 | 30 | 103 | 2.2 | 250.0 | 250.0 | 250.7 | 0.7 | ¹Miles Above Mouth | FLOODING S | OURCE | _ | FLOODWAY | | 1- | | AL-CHANCE FLOO
CE ELEVATION | OD | |-------------------------|----------------------------------|----------------------|--------------------------|--------------------------|----------------------------------|----------------------------------|----------------------------------|--------------------------| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | BEAR CREEK | | | | | | | | | | BEAR CREEK CA CB CC CD | 10.49
10.64
10.69
11.02 | 51
47
44
45 | 127
132
162
188 | 1.8
1.7
1.4
1.2 | 255.1
258.8
259.4
261.8 | 255.1
258.8
259.4
261.8 | 255.5
259.1
259.9
262.7 | 0.4
0.3
0.5
0.9 | | | | | | | | | | | ¹Miles Above Mouth | γT | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | | | | |----|-------------------------------------|-----------------|--|--|--| | ĒΕ | KING COUNTY, WA | 1 EGODIIAI DAIA | | | | | Ш | • | BEAR CREEK | | | | | ര | AND INCORPORATED AREAS | BLAN ONLLN | | | | | FLOODING SO | FLOODING SOURCE | | FLOODWAY 1-P | | | PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION | | | | |----------------|-----------------------|--------|-----------------|------------------|-------------|---|------------------|----------|--| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | | BIG SOOS CREEK | | | | | | | | | | | Α | 17,687 | 20 | 76 | 10.5 | 174.9 | 174.9 | 175.0 | 0.1 | | | В | 17,849 | 20 | 201 | 4.0 | 178.0 | 178.0 | 178.0 | 0.0 | | | С | 17,949 | 63 | 276 | 2.9 | 178.2 | 178.2 | 178.2 | 0.0 | | | D | 18,909 | 72 | 194 | 4.1 | 186.4 | 186.4 | 186.4 | 0.0 | | | E | 20,189 | 33 | 180 | 4.4 | 202.8 | 202.8 | 203.6 | 0.8 | | | F | 20,989 | 52 | 170 | 4.7 | 213.7 | 213.7 | 214.7 | 1.0 | | | G | 21,939 | 51 | 295 | 2.7 | 220.3 | 220.3 | 221.3 | 1.0 | | | Н | 23,099 | 32 | 85 | 9.4 | 236.3 | 236.3 | 236.3 | 0.0 | | | I | 25,019 | 46 | 244 | 3.3 | 262.2 | 262.2 | 263.2 | 1.0 | | | J | 25,969 | 27 | 113 | 7.1 | 272.1 | 272.1 | 272.8 | 0.7 | | | K | 26,609 | 32 | 124 | 3.1 | 285.1 | 285.1 | 285.1 | 0.0 | | | L | 27,769 | 37 | 77 | 5.0 | 299.9 | 299.9 | 300.0 | 0.1 | | | M | 29,169 | 41 | 220 | 1.8 | 307.0 | 307.0 | 308.0 | 1.0 | | | N | 29,369 | 33 | 168 | 2.3 | 307.5 | 307.5 | 308.5 | 1.0 | | | 0 | 29,515 | 48 | 246 | 1.6 | 308.0 | 308.0 | 308.8 | 0.8 | | | Р | 30,315 | 49 | 196 | 2.0 | 309.3 | 309.3 | 310.2 | 0.9 | | | Q | 31,515 | 43 | 143 | 2.7 | 313.2 | 313.2 | 314.2 | 1.0 | | | R | 32,635 | 165 | 620 | 0.6 | 314.4 | 314.4 | 315.4 | 1.0 | | | S | 33,124 | 32 | 151 | 2.6 | 316.7 | 316.7 | 317.4 | 0.7 | | | Т | 33,224 | 185 | 722 | 0.5 | 316.7 | 316.7 | 317.6 | 0.9 | | | U | 33,904 | 44 | 95 | 3.0 | 316.9 | 316.9 | 317.9 | 1.0 | | | V | 34,704 | 48 | 176 | 1.6 | 319.7 | 319.7 | 320.1 | 0.4 | | | W | 34,954 | 66 | 289 | 1.0 | 319.9 | 319.9 | 320.3 | 0.4 | | | X | 35,113 | 40 | 176 | 1.6 | 320.0 | 320.0 | 320.4 | 0.4 | | | Υ | 36,313 | 59 | 286 | 1.0 | 320.2 | 320.2 | 321.2 | 1.0 | | | Z | 38,163 | 190 | 365 | 0.8 | 321.1 | 321.1 | 322.0 | 0.9 | | | | | | | | | | | | | ¹Feet Above Mouth | FLOODING SOURCE | | FLOODWAY | | | 1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION | | | | |-----------------|-----------------------|----------|-----------------|------------------|---|---------------------|------------------|---------| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREAS | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | BIG SOOS CREEK | | | | | | | | | | AA | 39,843 | 217 | 264 | 1.1 | 323.5 | 323.5 | 323.7 | 0.2 | | AB | 41,903 | 96 | 248 | 1.1 | 327.3 | 327.3 | 328.3 | 1.0 | | AC | 42,248 | 34 | 210 | 1.3 | 330.2 | 330.2 | 330.4 | 0.2 | | AD | 42,448 | 63 | 240 | 1.2 | 330.3 | 330.3 | 330.8 | 0.5 | | AE | 43,209 | 25 | 120 | 2.3 | 330.5 | 330.5 | 331.3 | 0.8 | | AF | 43,329 | 134 | 510 | 0.5 | 330.7 | 330.7 | 331.4 | 0.7 | | AG | 44,689 | 34 | 126 | 2.2 | 330.9 | 330.9 | 331.9 | 1.0 | | AH | 46,529 | 21 | 96 | 2.9 | 334.6 | 334.6 | 335.6 | 1.0 | | Al | 46,677 | 19 | 99 | 2.8 | 334.8 | 334.8 | 335.8 | 1.0 | | AJ | 46,837 | 27 | 129 | 1.7 | 335.3 | 335.3 | 336.2 | 0.9 | | AK | 47,737 | 24 | 100 | 2.2 | 336.2 | 336.2 | 337.1 | 0.9 | | AL | 48,280 | 23 | 72 | 3.1 | 337.5 | 337.5 | 337.9 | 0.4 | | AM | 48,607 | 45 | 73 | 3.0 | 337.6 | 337.6 | 338.0 | 0.4 | | AN | 50,070 | 59 | 118 | 1.9 | 339.1 | 339.1 | 340.1 | 1.0 | | AO | 51,270 | 21 | 58 | 3.8 | 344.2 | 344.2 | 344.2 | 0.0 | | AP | 52,470 | 50 | 160 | 1.4 | 345.8 | 345.8 | 345.8 | 0.0 | | AQ | 53,670 | 56 | 201 | 1.1 | 346.6 | 346.6 | 347.6 | 1.0 | | AR | 55,010 | 143 | 335 | 0.7 | 347.7 | 347.7 | 348.6 | 0.9 | | AS | 55,156 | 13 | 62 | 3.6 | 348.2 | 348.2 | 349.2 | 1.0 | | AT | 55,216 | 94 | 290 | 0.8 | 348.8 | 348.8 | 349.6 | 0.8 | | AU | 56,896 | 20 | 47 | 4.7 | 350.5 | 350.5 | 351.1 | 0.6 | | AV | 57,636 | 101 | 232 | 0.9 | 351.7 | 351.7 | 352.6 | 0.9 | | AW | 57,886 | 14 | 50 | 4.4 | 351.9 | 351.9 | 352.8 | 0.9 | | AX | 58,015 | 68 | 159 | 1.4 | 352.9 | 352.9 | 353.6 | 0.7 | | AY | 59,215 | 13 | 42 | 5.2 | 354.6 | 354.6 | 355.4 | 0.8 | | AZ | 60,495 | 76 | 127 | 1.7 | 358.5 | 358.5 | 359.3 | 0.8 | ¹Feet Above Mouth | 1, | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | | | | |----|-------------------------------------|----------------|--|--|--| | ΙÉ | KING COUNTY, WA | TEOODHAI DAIA | | | | | μ | AND INCORPORATED AREAS | BIG SOOS CREEK | | | | | 6 | AND INCORPORATED AREAS | | | | | | FLOODING SO | FLOODING SOURCE | | FLOODWAY | | | 1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION | | | | |--|--|--|--|---|---|---|---|--|--| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | | BIG SOOS CREEK | | | | | | | | | | | BA
BB
BC
BD
BE
BF
BG
BH
BI
BJ
BK
BL
BM
BN
BO
BP
BQ | 60,775
61,025
61,925
62,323
62,473
64,353
65,563
66,623
67,623
67,792
67,932
68,932
70,132
71,516
72,676
74,054
75,314 | 15
49
27
13
139
44
31
40
46
5
11
84
11
74
90
97 | 46
101
31
46
361
115
42
75
64
19
44
201
24
134
234
77 | 4.7
1.5
4.8
3.3
0.4
1.3
2.2
1.2
1.4
4.9
2.0
0.4
3.7
0.7
0.4
1.2
5.6 | 359.3
360.6
362.3
364.2
364.6
364.7
367.9
369.4
371.6
373.6
374.2
374.4
375.0
383.9
383.9
384.3
400.4 | 359.3
360.6
362.3
364.2
364.6
364.7
367.9
369.4
371.6
373.6
374.2
374.4
375.0
383.9
383.9
384.3
400.4 | 360.1
360.8
362.3
365.0
365.3
365.7
367.9
370.2
372.6
373.9
374.5
375.1
375.8
383.9
384.4
385.2
400.4 | 0.8
0.2
0.0
0.8
0.7
1.0
0.0
0.8
1.0
0.3
0.7
0.8
0.0
0.5
0.9
0.0 | | | | | | | | | | | | | ¹Feet Above Mouth | FLOODING S | OURCE | FLOODWAY | | | 1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION | | | | |---------------|-----------------------|----------|-----------------|------------------|---|---------------------|------------------|---------| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREAS | | | | (FEET) |
(SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | CEDAR RIVER | | | | | | | | | | Α | 119 | 221 | 1,216 | 7.2 | 24.2 | 24.2 | 24.2 | 0.0 | | В | 975 | 153 | 1,218 | 8.4 | 24.8 | 24.8 | 24.8 | 0.0 | | С | 1,640 | 155 | 1,226 | 9.1 | 25.4 | 25.4 | 25.4 | 0.0 | | D | 2,438 | 140 | 1,169 | 9.7 | 26.4 | 26.4 | 26.7 | 0.3 | | E | 3,364 | 145 | 1,228 | 8.9 | 28.1 | 28.1 | 28.8 | 0.7 | | F | 3,962 | 160 | 1,164 | 8.0 | 29.6 | 29.6 | 30.0 | 0.4 | | G | 4,063 | 145 | 1,142 | 9.0 | 29.6 | 29.6 | 30.0 | 0.4 | | Н | 4,344 | 128 | 1,134 | 10.0 | 30.0 | 30.0 | 30.4 | 0.4 | | I | 5,255 | 138 | 1,173 | 9.4 | 32.1 | 32.1 | 32.5 | 0.4 | | J | 5,565 | 164 | 1,156 | 7.4 | 33.2 | 33.2 | 33.6 | 0.4 | | K | 5,636 | 180 | 1,181 | 6.4 | 33.6 | 33.6 | 33.9 | 0.3 | | L | 5,746 | 149 | 1,173 | 6.7 | 33.8 | 33.8 | 34.3 | 0.5 | | M | 5,850 | 196 | 1,202 | 7.1 | 34.0 | 34.0 | 34.3 | 0.3 | | N | 6,485 | 119 | 1,131 | 10.6 | 34.3 | 34.3 | 34.6 | 0.3 | | 0 | 6,530 | 119 | 1,129 | 9.9 | 35.0 | 35.0 | 35.2 | 0.2 | | Р | 6,708 | 117 | 1,139 | 10.1 | 35.2 | 35.2 | 35.5 | 0.3 | | Q | 6,917 | 137 | 1,137 | 9.1 | 35.7 | 35.7 | 36.2 | 0.5 | | R | 6,961 | 149 | 1,149 | 7.4 | 37.5 | 37.5 | 38.1 | 0.6 | | S | 7,658 | 119 | 1,128 | 9.4 | 38.2 | 38.2 | 38.8 | 0.6 | | Т | 7,736 | 119 | 1,128 | 8.8 | 39.1 | 39.1 | 39.7 | 0.6 | | U | 8,011 | 130 | 1,134 | 8.0 | 39.8 | 39.8 | 40.3 | 0.5 | | V | 8,383 | 114 | 1,126 | 8.4 | 40.2 | 40.2 | 40.6 | 0.4 | | W | 8,443 | 114 | 1,130 | 7.6 | 41.6 | 41.6 | 42.1 | 0.5 | | Χ | 8,694 | 171 | 1,269 | 5.2 | 42.3 | 42.3 | 43.3 | 1.0 | | Υ | 8,891 | 166 | 1,350 | 6.9 | 42.0 | 42.0 | 43.0 | 1.0 | | Z | 10,776 | 87 | 1,089 | 11.7 | 44.1 | 44.1 | 45.0 | 0.9 | ¹Feet above Mouth | /T | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | | | | |----|-------------------------------------|---------------|--|--|--| | Ē | KING COUNTY, WA | | | | | | m | , | CEDAR RIVER | | | | | 6 | AND INCORPORATED AREAS | CLS/III III C | | | | | FLOODING S | FLOODING SOURCE | | FLOODWAY | | | 1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION | | | | |---------------|---------------------|--------|-----------------|------------------|-------------|---|------------------|----------|--| | CROSS SECTION | DISTANCE | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | | CEDAR RIVER | | | | | | | | | | | AA | 12,173 ¹ | 120 | 1,235 | 8.7 | 48.3 | 48.3 | 49.0 | 0.7 | | | AB | 12,741 ¹ | 95 | 1,183 | 11.5 | 48.7 | 48.7 | 49.5 | 0.8 | | | AC | 13,187¹ | 125 | 1,297 | 9.0 | 50.8 | 50.8 | 51.3 | 0.5 | | | AD | 13,726 ¹ | 92 | 1,514 | 12.0 | 51.3 | 51.3 | 51.8 | 0.5 | | | AE | 14,467 ¹ | 113 | 1,458 | 8.7 | 54.1 | 54.1 | 54.5 | 0.4 | | | AF | 14,481 ¹ | 113 | 1,458 | 8.7 | 54.2 | 54.2 | 54.5 | 0.3 | | | AG | 15,604 ¹ | 100 | 1,202 | 9.4 | 58.6 | 58.6 | 59.2 | 0.6 | | | AH | 16,576 ¹ | 132 | 1,267 | 7.9 | 61.3 | 61.3 | 62.0 | 0.7 | | | Al | 18,083 ¹ | 124 | 1,460 | 10.9 | 64.0 | 64.0 | 64.7 | 0.7 | | | AJ | 19,281 ¹ | 115 | 1,150 | 10.2 | 68.2 | 68.2 | 68.5 | 0.3 | | | AK | 19,692 ¹ | 139 | 1,181 | 9.6 | 69.5 | 69.5 | 70.0 | 0.5 | | | AL | 20,670 ¹ | 125 | 1,151 | 9.0 | 74.4 | 74.4 | 75.1 | 0.7 | | | AM | 21,843 ¹ | 128 | 1,204 | 8.6 | 77.6 | 77.6 | 78.6 | 1.0 | | | AN | 22,508 ¹ | 94 | 1,129 | 11.8 | 78.9 | 78.9 | 79.7 | 0.8 | | | AO | 23,080 ¹ | 201 | 1,772 | 5.8 | 82.6 | 82.6 | 83.1 | 0.5 | | | AP | 23,492 ¹ | 124 | 2,108 | 10.5 | 82.4 | 82.4 | 82.8 | 0.4 | | | AQ | 24,120 ¹ | 304 | 2,341 | 4.9 | 85.5 | 85.5 | 86.3 | 0.8 | | | AR | 24,875 ¹ | 675 | 2,407 | 3.5 | 87.2 | 87.2 | 87.8 | 0.6 | | | AS | 26,219 ¹ | 97 | 2,036 | 10.4 | 91.6 | 91.6 | 91.8 | 0.2 | | | AT | 26,848 ¹ | 628 | 2,258 | 3.9 | 96.5 | 96.5 | 96.8 | 0.3 | | | AU | 27,259 ¹ | 825 | 2,481 | 2.7 | 97.9 | 97.9 | 98.9 | 1.0 | | | AV | 27,833 ¹ | 645 | 2,293 | 3.5 | 98.9 | 98.9 | 99.9 | 1.0 | | | AW | 590 ² | 814 | 3,790 | 3.1 | 102.1 | 102.1 | 102.5 | 0.4 | | | AX | 1,071 ² | 760 | 2,713 | 4.3 | 103.0 | 103.0 | 103.4 | 0.4 | | | AY | 1,583 ² | 427 | 2,548 | 4.6 | 104.3 | 104.3 | 104.5 | 0.2 | | | AZ | 2,347 ² | 207 | 1,081 | 10.8 | 106.6 | 106.6 | 106.6 | 0.0 | | | | | | | | | | | | | ¹Feet above mouth FEDERAL EMERGENCY MANAGEMENT AGENCY KING COUNTY, WA AND INCORPORATED AREAS **FLOODWAY DATA** **CEDAR RIVER** TABLE 6 ²Feet Above 590 feet downstream of 149th Avenue S.E. | FLOODING SO | DURCE | FLOODWAY | | | 1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION | | | | |---------------|-----------------------|----------|-----------------|------------------|---|---------------------|------------------|----------| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | CEDAR RIVER | | | | | | | | | | ВА | 3,100 | 92 | 1,028 | 11.3 | 110.4 | 110.4 | 111.0 | 0.6 | | BB | 3,578 | 129 | 1,326 | 8.8 | 113.1 | 113.1 | 113.7 | 0.6 | | BC | 4,287 | 126 | 1,330 | 8.8 | 115.2 | 115.2 | 115.8 | 0.6 | | BD | 4,645 | 196 | 1,768 | 6.6 | 116.8 | 116.8 | 117.4 | 0.6 | | BE | 5,014 | 355 | 2,834 | 4.1 | 117.9 | 117.9 | 118.4 | 0.5 | | BF | 5,654 | 175 | 1,300 | 9.0 | 118.4 | 118.4 | 118.7 | 0.3 | | BG | 6,171 | 148 | 1,145 | 10.2 | 120.7 | 120.7 | 120.9 | 0.2 | | BH | 6,876 | 147 | 1,214 | 9.6 | 124.9 | 124.9 | 125.0 | 0.1 | | BI | 7,228 | 124 | 1,096 | 10.6 | 126.4 | 126.4 | 126.6 | 0.2 | | BJ | 7,496 | 196 | 1,699 | 6.9 | 128.0 | 128.0 | 128.7 | 0.7 | | BK | 8,013 | 175 | 1,256 | 9.3 | 129.8 | 129.8 | 130.0 | 0.2 | | BL | 8,469 | 233 | 1,699 | 6.7 | 131.8 | 131.8 | 132.4 | 0.6 | | BM | 8,991 | 140 | 1,108 | 10.3 | 133.3 | 133.3 | 133.8 | 0.5 | | BN | 9,587 | 169 | 1,365 | 8.4 | 136.6 | 136.6 | 137.2 | 0.6 | | ВО | 10,092 | 198 | 1,565 | 7.3 | 138.7 | 138.7 | 139.1 | 0.4 | | BP | 10,840 | 90 | 801 | 14.2 | 140.9 | 140.9 | 141.0 | 0.1 | | BQ | 11,239 | 237 | 1,800 | 6.3 | 145.4 | 145.4 | 145.5 | 0.1 | | BR | 11,912 | 148 | 1,200 | 9.5 | 147.0 | 147.0 | 147.1 | 0.1 | | BS | 12,248 | 166 | 1,297 | 8.8 | 147.9 | 147.9 | 148.9 | 1.0 | | BT | 12,821 | 253 | 1,826 | 6.2 | 150.5 | 150.5 | 151.3 | 0.8 | | BU | 13,422 | 110 | 911 | 12.5 | 152.4 | 152.4 | 152.5 | 0.1 | | BV | 14,014 | 289 | 1,969 | 5.8 | 156.9 | 156.9 | 157.0 | 0.1 | | BW | 14,471 | 556 | 2,377 | 4.8 | 158.2 | 158.2 | 158.6 | 0.4 | | BX | 14,939 | 405 | 1,500 | 7.6 | 159.4 | 159.4 | 159.6 | 0.2 | | BY | 15,450 | 128 | 905 | 12.6 | 161.6 | 161.6 | 161.6 | 0.0 | | BZ | 15,974 | 287 | 1,968 | 5.8 | 165.9 | 165.9 | 165.9 | 0.0 | ¹Feet Above 590 feet Downstream of 149th Avenue S.E. | FEDERAL EMERGENCY MANAGEMENT AGENCY KING COUNTY, WA AND INCORPORATED AREAS CEDAR RIVER | | | | |---|----|-------------------------------------|---------------| | KING COUNTY, WA | 1/ | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | | | BL | KING COUNTY, WA | TEODWAI DAIA | | IOI ANDINGORPORATEDAREAS I | Е | AND INCORPORATED AREAS | CEDAR RIVER | | FLOODING SO | OURCE | FLOODWAY | | | 1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION | | | | |---------------|-----------------------|----------|-----------------|------------------|---|---------------------|------------------|----------| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | CEDAR RIVER | | | | | | | | | | CA | 16,300 | 292 | 1,813 | 6.3 | 166.6 | 166.6 | 166.6 | 0.0 | | СВ | 16,902 | 859 | 1,551 | 7.4 | 168.8 | 168.8 | 168.8 | 0.0 | | CC | 17,394 | 1,405 | 1,608 | 7.1 | 171.1 | 171.1 | 171.1 | 0.0 | | CD | 17,898 | 1,780 | 3,528 | 3.2 | 174.2 | 174.2 | 174.2 | 0.0 | | CE | 18,580 | 1,857 | 5,744 | 2.0 | 176.5 | 176.5 | 176.5 | 0.0 | | CF | 19,471 | 1,471 | 2,422 | 4.7 | 179.0 | 179.0 | 179.0 | 0.0 | | CG | 20,032 | 888 | 1,901 | 6.0 | 182.6 | 182.6 | 182.6 | 0.0 | | СН | 20,511 | 376 | 1,803 | 6.3 | 184.7 | 184.7 | 184.7 | 0.0 | | CI | 21,044 | 159 | 1,174 | 9.7 | 186.7 | 186.7 | 186.7 | 0.0 | | Cl | 21,474 | 172 | 1,386 | 8.2 | 188.8 | 188.8 | 189.1 | 0.3 | | CK | 21,884 | 100 | 966 | 11.8 | 190.2 | 190.2 | 190.3 | 0.1 | | CL | 22,087 | 183 | 1,860 | 6.1 | 192.5 | 192.5 | 192.8 | 0.3 | | CM | 22,545 | 140 | 1,438 | 7.9 | 193.4 | 193.4 | 193.5 | 0.1 | | CN | 23,036 | 116 | 1,237 | 9.2 | 194.8 | 194.8 | 195.2 | 0.4 | | СО | 23,570 | 177 | 1,692 | 6.7 | 196.7 | 196.7 | 197.6 | 0.9 | | СР | 24,060 | 120 | 1,159 | 9.8 | 198.1 | 198.1 | 198.7 | 0.6 | | CQ | 24,478 | 193 | 1,643 | 6.9 | 200.5 | 200.5 | 200.7 | 0.2 | | CR | 25,048 | 168 | 1,621 | 7.0 | 201.7 | 201.7 | 202.3 | 0.6 | | CS | 25,469 | 315 | 2,485 | 4.6 | 202.6 | 202.6 | 203.5 | 0.9 | | СТ | 26,187 | 336 | 2,214 | 5.2 | 204.6 | 204.6 | 205.0 | 0.4 | | CU | 26,714 | 719 | 4,076 | 2.8 | 206.5 | 206.5 | 206.7 | 0.2 | | CV | 27,080 | 659 | 3,995 | 2.9 | 207.3 | 207.3 | 207.4 | 0.1 | | CW | 27,649 | 742 | 2,795 | 4.1 | 208.8 | 208.8 | 208.8 | 0.0 | | CX | 28,133 | 1,047 | 4,397 | 2.6 | 210.8 | 210.8 | 210.8 | 0.0 | | CY | 28,752 | 640 | 2,589 | 4.4 | 212.7 | 212.7 | 212.9 | 0.2 | | CZ | 29,376 | 580 | 3,036 | 3.8 | 215.1 | 215.1 | 216.1 | 1.0 | | | | | | | | | | | ¹Feet Above 590 feet downstream of 149th Avenue S.E. | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | | | | |-------------------------------------|----------------|--|--|--| | KING COUNTY, WA | I LOODWAT DATA | | | | | KING COUNTT, WA | CEDAR RIVER | | | | | AND INCORPORATED AREAS | CEDAR RIVER | | | | | FLOODING S | OURCE | | FLOODWAY | | 1-1 | - | AL-CHANCE FLOO
CE ELEVATION | DD | |---------------
-----------------------|--------|-----------------|------------------|-------------|---------------------|--------------------------------|----------| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASI | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | CEDAR RIVER | | | | | | | | | | DA | 29,786 | 483 | 2,309 | 4.9 | 216.5 | 216.5 | 217.4 | 0.9 | | DB | 30,140 | 585 | 2,786 | 4.1 | 218.4 | 218.4 | 219.2 | 0.8 | | DC | 30,645 | 583 | 2,555 | 4.5 | 220.2 | 220.2 | 221.0 | 0.8 | | DD | 31,246 | 366 | 1,884 | 6.1 | 222.5 | 222.5 | 223.0 | 0.5 | | DE | 31,606 | 326 | 1,533 | 7.4 | 223.8 | 223.8 | 224.5 | 0.7 | | DF | 32,180 | 1,192 | 5,359 | 2.1 | 226.0 | 226.0 | 227.0 | 1.0 | | DG | 32,766 | 147 | 1,083 | 10.5 | 228.5 | 228.5 | 228.5 | 0.0 | | DH | 33,216 | 450 | 2,714 | 4.2 | 231.4 | 231.4 | 231.6 | 0.2 | | DI | 33,625 | 497 | 2,187 | 5.2 | 231.6 | 231.6 | 232.6 | 1.0 | | DJ | 34,530 | 722 | 3,097 | 3.7 | 235.4 | 235.4 | 235.9 | 0.5 | | DK | 35,050 | 1,120 | 3,863 | 3.0 | 236.3 | 236.3 | 237.3 | 1.0 | | DL | 35,259 | 1,290 | 4,066 | 2.8 | 236.9 | 236.9 | 237.8 | 0.9 | | DM | 35,925 | 590 | 2,513 | 4.5 | 238.9 | 238.9 | 239.4 | 0.5 | | DN | 36,800 | 584 | 2,487 | 4.5 | 241.9 | 241.9 | 242.7 | 0.8 | | DO | 37,407 | 780 | 1,728 | 6.5 | 243.9 | 243.9 | 244.9 | 1.0 | | DP | 37,897 | 630 | 1,221 | 9.2 | 247.8 | 247.8 | 247.9 | 0.1 | | DQ | 38,884 | 1,300 | 5,354 | 2.1 | 251.5 | 251.5 | 251.7 | 0.2 | | DR | 39,493 | 760 | 2,014 | 5.6 | 251.9 | 251.9 | 252.0 | 0.1 | | DS | 39,911 | 1,263 | 3,725 | 3.0 | 254.2 | 254.2 | 254.7 | 0.5 | | DT | 40,484 | 677 | 1,689 | 6.7 | 256.0 | 256.0 | 256.5 | 0.5 | | DU | 41,036 | 583 | 2,166 | 5.2 | 259.8 | 259.8 | 259.8 | 0.0 | | DV | 41,629 | 1,526 | 3,966 | 2.8 | 261.8 | 261.8 | 262.0 | 0.2 | | DW | 42,240 | 1,320 | 2,664 | 4.2 | 263.2 | 263.2 | 263.5 | 0.3 | | DX | 42,705 | 614 | 2,279 | 4.9 | 265.5 | 265.5 | 266.1 | 0.6 | | DY | 43,094 | 464 | 1,945 | 5.8 | 267.8 | 267.8 | 267.8 | 0.0 | | DZ | 43,598 | 195 | 1,192 | 9.4 | 270.3 | 270.3 | 271.2 | 0.9 | ¹Feet Above 590 feet Downstream of 149th Avenue S.E. | FEDERAL EMERGENCY MANAGEMENT AGENCY KING COUNTY, WA AND INCORPORATED AREAS CEDAR RIVER | | | | |---|----|-------------------------------------|---------------| | KING COUNTY, WA | 1/ | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | | | BL | KING COUNTY, WA | TEODWAI DAIA | | IOI ANDINGORPORATEDAREAS I | Е | AND INCORPORATED AREAS | CEDAR RIVER | | FLOODING S | OURCE | | FLOODWAY | | 1-1 | - | AL-CHANCE FLOO
CE ELEVATION | DD | |---------------|-----------------------|--------|-----------------|------------------|-------------|---------------------|--------------------------------|----------| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASI | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | CEDAR RIVER | | | | | | | | | | EA | 44,367 | 668 | 3,164 | 3.6 | 274.1 | 274.1 | 275.1 | 1.0 | | EB | 44,960 | 739 | 1,793 | 6.3 | 277.0 | 277.0 | 277.1 | 0.1 | | EC | 45,348 | 622 | 2,596 | 4.3 | 279.3 | 279.3 | 279.8 | 0.5 | | ED | 45,990 | 175 | 1,012 | 11.1 | 281.7 | 281.7 | 282.6 | 0.9 | | EE | 46,158 | 121 | 1,008 | 11.2 | 284.2 | 284.2 | 284.2 | 0.0 | | EF | 46,262 | 163 | 1,502 | 7.5 | 285.8 | 285.8 | 285.8 | 0.0 | | EG | 46,551 | 524 | 2,624 | 4.3 | 287.0 | 287.0 | 287.0 | 0.0 | | EH | 47,012 | 526 | 2,482 | 4.5 | 288.0 | 288.0 | 288.2 | 0.2 | | El | 47,529 | 517 | 2,586 | 4.4 | 289.4 | 289.4 | 290.0 | 0.6 | | EJ | 48,270 | 1,331 | 3,875 | 2.9 | 291.6 | 291.6 | 292.6 | 1.0 | | EK | 48,965 | 466 | 1,666 | 6.5 | 295.3 | 295.3 | 295.3 | 0.0 | | EL | 49,473 | 792 | 2,516 | 4.3 | 297.7 | 297.7 | 298.7 | 1.0 | | EM | 49,927 | 489 | 1,511 | 7.2 | 300.0 | 300.0 | 300.0 | 0.0 | | EN | 50,711 | 350 | 1,540 | 7.1 | 305.2 | 305.2 | 305.4 | 0.2 | | EO | 51,403 | 477 | 2,215 | 4.9 | 307.8 | 307.8 | 308.8 | 1.0 | | EP | 51,802 | 251 | 1,074 | 10.2 | 310.3 | 310.3 | 310.3 | 0.0 | | EQ | 52,054 | 122 | 1,497 | 7.3 | 313.5 | 313.5 | 313.5 | 0.0 | | ER | 52,566 | 153 | 1,501 | 7.3 | 315.7 | 315.7 | 315.7 | 0.0 | | ES | 52,856 | 303 | 1,970 | 5.5 | 317.0 | 317.0 | 317.0 | 0.0 | | ET | 53,510 | 751 | 1,448 | 7.5 | 319.3 | 319.3 | 319.4 | 0.1 | | EU | 53,861 | 879 | 1,778 | 6.1 | 322.0 | 322.0 | 322.1 | 0.1 | | EV | 54,556 | 553 | 1,965 | 5.6 | 327.1 | 327.1 | 327.9 | 0.8 | | EW | 55,246 | 527 | 2,171 | 5.0 | 330.6 | 330.6 | 331.4 | 0.8 | | WX | 55,616 | 536 | 1,502 | 7.3 | 332.6 | 332.6 | 332.6 | 0.0 | | EY | 56,100 | 735 | 3,381 | 3.2 | 335.5 | 335.5 | 336.2 | 0.7 | | EZ | 56,515 | 732 | 2,704 | 4.0 | 336.7 | 336.7 | 337.4 | 0.7 | ¹Feet Above 590 Feet Downstream of 149th Avenue S.E. | 7, | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | |----------|-------------------------------------|----------------| | <u>@</u> | KING COUNTY, WA | 12005WAT SATIA | | im I | • | CEDAR RIVER | | 6 | AND INCORPORATED AREAS | GEDAR RIVER | | FLOODING S | OURCE | | FLOODWAY | | 1-l | PERCENT-ANNUA
WATER SURFA | AL-CHANCE FLOC
CE ELEVATION | DD | |---------------|-----------------------|--------|-----------------|------------------|-------------|------------------------------|--------------------------------|----------| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASI | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | CEDAR RIVER | | | | | | | | | | FA | 56,750 | 712 | 2,920 | 3.7 | 337.9 | 337.9 | 338.2 | 0.3 | | FB | 57,330 | 626 | 1,623 | 6.7 | 339.9 | 339.9 | 340.3 | 0.4 | | FC | 57,998 | 730 | 3,364 | 3.2 | 344.0 | 344.0 | 345.0 | 1.0 | | FD | 58,549 | 595 | 1,820 | 6.0 | 345.4 | 345.4 | 346.4 | 1.0 | | FE | 59,046 | 300 | 1,167 | 9.3 | 350.1 | 350.1 | 350.5 | 0.4 | | FF | 59,599 | 246 | 1,369 | 8.4 | 356.5 | 356.5 | 356.5 | 0.0 | | FG | 60,000 | 256 | 2,246 | 4.9 | 357.3 | 357.3 | 357.4 | 0.1 | | FH | 60,471 | 345 | 2,115 | 5.2 | 358.0 | 358.0 | 358.1 | 0.1 | | FI | 61,078 | 285 | 1,687 | 6.5 | 359.4 | 359.4 | 360.1 | 0.7 | | FJ | 61,651 | 133 | 1,117 | 9.8 | 363.6 | 363.6 | 363.8 | 0.2 | | FK | 62,017 | 241 | 1,698 | 6.4 | 365.1 | 365.1 | 366.1 | 1.0 | | FL | 62,629 | 240 | 1,648 | 6.6 | 367.7 | 367.7 | 368.5 | 0.8 | | FM | 62,939 | 218 | 1,572 | 6.9 | 369.1 | 369.1 | 370.1 | 1.0 | | FN | 63,517 | 342 | 1,749 | 6.2 | 371.7 | 371.7 | 372.7 | 1.0 | | FO | 63,910 | 337 | 2,173 | 5.0 | 375.1 | 375.1 | 375.1 | 0.0 | | FP | 64,346 | 338 | 1,745 | 6.3 | 375.8 | 375.8 | 376.2 | 0.4 | | FQ | 64,898 | 325 | 1,618 | 6.7 | 378.5 | 378.5 | 378.6 | 0.1 | | FR | 65,258 | 409 | 1,905 | 5.7 | 381.2 | 381.2 | 381.2 | 0.0 | | FS | 65,539 | 257 | 1,393 | 7.8 | 382.4 | 382.4 | 382.4 | 0.0 | | FT | 66,387 | 240 | 1,246 | 8.7 | 387.0 | 387.0 | 387.3 | 0.3 | | FU | 67,106 | 235 | 1,523 | 7.2 | 390.8 | 390.8 | 391.7 | 0.9 | | FV | 67,669 | 266 | 1,233 | 8.8 | 393.7 | 393.7 | 394.3 | 0.6 | | FW | 68,244 | 235 | 1,655 | 6.6 | 398.0 | 398.0 | 398.1 | 0.1 | | FX | 68,915 | 516 | 1,347 | 8.1 | 400.4 | 400.4 | 400.8 | 0.4 | | FY | 69,450 | 417 | 1,671 | 6.5 | 405.1 | 405.1 | 405.9 | 0.8 | | FZ | 69,935 | 436 | 1,945 | 5.6 | 408.3 | 408.3 | 409.2 | 0.9 | ¹Feet Above 590 feet Downstream of 149th Avenue S.E. | FEDERAL EMERGENCY MANAGEMENT AGENCY KING COUNTY, WA AND INCORPORATED AREAS CEDAR RIVER | | | | |---|----|-------------------------------------|---------------| | KING COUNTY, WA | 1/ | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | | | BL | KING COUNTY, WA | TEODWAI DAIA | | IOI ANDINGORPORATEDAREAS I | Е | AND INCORPORATED AREAS | CEDAR RIVER | | FLOODING S | OURCE | | FLOODWAY | | 1- | PERCENT-ANNUA
WATER SURFA | AL-CHANCE FLOO
CE ELEVATION |)D | |---------------|-----------------------|--------|-----------------|------------------|-------------|------------------------------|--------------------------------|---------| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREAS | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | CEDAR RIVER | | | | | | | | | | GA | 70,720 | 129 | 1,047 | 10.4 | 412.8 | 412.8 | 413.8 | 1.0 | | GB | 71,336 | 199 | 1,239 | 8.8 | 419.0 | 419.0 | 419.0 | 0.0 | | GC | 71,828 | 378 | 1,607 | 6.6 | 421.9 | 421.9 | 422.8 | 0.9 | | GD | 72,416 | 219 | 1,265 | 8.3 | 426.0 | 426.0 | 426.0 | 0.0 | | GE | 72,593 | 229 | 1,286 | 8.2 | 427.2 | 427.2 | 427.3 | 0.1 | | GF | 72,809 | 195 | 919 | 11.5 | 428.3 | 428.3 | 428.4 | 0.1 | | GG | 73,297 | 162 | 1,109 | 9.5 | 433.5 | 433.5 | 433.5 | 0.0 | | GH | 73,905 | 163 | 1,005 | 10.5 | 438.0 | 438.0 | 438.0 | 0.0 | | GI | 74,288 | 280 | 2,145 | 4.9 | 442.9 | 442.9 | 442.9 | 0.0 | | GJ | 74,562 | 267 | 2,005 | 5.3 | 443.8 | 443.8 | 443.8 | 0.0 | | GK | 75,119 | 265 | 1,217 | 8.7 | 445.4 | 445.4 | 445.4 | 0.0 | | GL | 75,786 | 275 | 1,300 | 8.1 | 450.2 | 450.2 | 450.2 | 0.0 | | GM | 76,313 | 203 | 1,168 | 9.0 | 452.9 | 452.9 | 453.0 | 0.1 | | GN | 76,895 | 144 | 976 | 10.8 | 456.0 | 456.0 | 456.0 | 0.0 | | GO | 77,539 | 142 | 980 | 10.8 | 460.3 | 460.3 | 460.3 | 0.0 | | GP | 78,285 | 142 | 1,091 | 9.7 | 465.0 | 465.0 | 465.0 | 0.0 | | GQ | 78,755 | 186 | 946 | 11.2 | 468.0 | 468.0 | 468.2 | 0.2 | | GR | 79,317 | 410 | 2,273 | 4.6 | 472.1 | 472.1 | 472.8 | 0.7 | | GS | 79,805 | 414 | 1,830 | 5.8 | 473.8 | 473.8 | 474.6 | 0.8 | | GT | 80,215 | 187 | 1,317 | 7.8 | 476.7 | 476.7 | 476.7 | 0.0 | | GU | 80,731 | 182 | 1,062 | 9.7 | 479.0 | 479.0 | 479.0 | 0.0 | | GV | 81,312 | 184 | 1,501 | 6.9 | 482.3 | 482.3 | 482.4 | 0.1 | | GW | 81,855 | 188 | 1,243 | 8.3 | 484.2
| 484.2 | 484.3 | 0.1 | | GX | 82,301 | 148 | 1,164 | 8.9 | 486.0 | 486.0 | 486.4 | 0.4 | | GY | 82,757 | 155 | 1,353 | 7.6 | 488.2 | 488.2 | 488.4 | 0.2 | | GZ | 83,445 | 155 | 838 | 12.3 | 491.4 | 491.4 | 491.4 | 0.0 | ¹Feet Above 590 feet Downstream of 149th Avenue S.E. | FEDERAL EMERGENCY MANAGEMENT AGENCY KING COUNTY, WA AND INCORPORATED AREAS CEDAR RIVER | | | | |---|----|-------------------------------------|---------------| | KING COUNTY, WA | 1/ | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | | | BL | KING COUNTY, WA | TEODWAI DAIA | | IOI ANDINGORPORATEDAREAS I | Е | AND INCORPORATED AREAS | CEDAR RIVER | | FLOODING S | OURCE | | FLOODWAY | | 1-1 | PERCENT-ANNUA
WATER SURFA | AL-CHANCE FLOO
CE ELEVATION | DD | |---------------|-----------------------|--------|-----------------|------------------|-------------|------------------------------|--------------------------------|----------| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | CEDAR RIVER | | | | | | | | | | HA | 83,983 | 140 | 1,043 | 9.9 | 497.7 | 497.7 | 497.7 | 0.0 | | HB | 84,268 | 118 | 915 | 11.3 | 499.0 | 499.0 | 499.0 | 0.0 | | HC | 84,761 | 112 | 980 | 10.5 | 502.0 | 502.0 | 502.1 | 0.1 | | HD | 85,516 | 91 | 741 | 13.9 | 506.8 | 506.8 | 507.2 | 0.4 | | HE | 86,113 | 84 | 866 | 11.9 | 513.2 | 513.2 | 513.6 | 0.4 | | HF | 86,837 | 118 | 1,099 | 9.4 | 518.2 | 518.2 | 518.5 | 0.3 | | HG | 87,605 | 113 | 932 | 11.1 | 522.2 | 522.2 | 522.2 | 0.0 | | HH | 88,321 | 136 | 1,381 | 7.5 | 526.4 | 526.4 | 526.4 | 0.0 | | HI | 88,521 | 124 | 1,235 | 8.3 | 526.9 | 526.9 | 526.9 | 0.0 | | HJ | 88,831 | 124 | 1,038 | 9.9 | 528.0 | 528.0 | 528.0 | 0.0 | | | | | | | | | | | ¹Feet Above 590 feet Downstream of 149th Avenue S.E. | 1, | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | |----|-------------------------------------|----------------| | Θ | KING COUNTY, WA | 1 LOODWAT DATA | | | , | CEDAR RIVER | | 6 | AND INCORPORATED AREAS | GEDAR RIVER | | FLOODING SO | OURCE | | FLOODWAY | | 1- | | AL-CHANCE FLOO
CE ELEVATION | OD | |--|--|--|---|---|--|--|--|--| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | EAST FORK ISSAQUAH CREEK A B C D E F G H | 100
334
620
871
1,071
1,164
1,540
1,950
2,069 | 30
23
28
30
34
42
29
35
59 | 155
114
123
184
150
152
113
143
234 | 6.8
9.2
8.6
5.7
7.1
6.9
9.3
7.4
4.0 | 78.6
79.4
83.8
89.1
91.2
92.0
95.2
101.9
104.0 | 76.6 ² 79.4 83.8 89.1 91.2 92.0 95.2 101.9 104.0 | 77.5 ² 80.3 84.4 89.7 91.2 92.0 95.7 102.5 104.8 | 0.9
0.9
0.6
0.6
0.0
0.0
0.5
0.6 | | J
K
L
M
N
O
P
Q
R
S | 2,166
2,657
3,053
3,543
3,950
4,415
4,696
4,912
5,201
5,378 | 41
35
27
28
76
45
32
21
31
22 | 152
155
128
151
222
177
136
127
131
91 | 7.2
6.8
8.2
7.0
4.7
5.9
7.7
8.2
8.0
11.5 | 104.8
110.1
114.8
122.1
128.7
137.7
141.9
144.8
150.0
157.1 | 104.8
110.1
114.8
122.1
128.7
137.7
141.9
144.8
150.0
157.1 | 105.2
111.0
115.4
123.1
128.9
138.3
141.9
145.4
150.6
157.1 | 0.4
0.9
0.6
1.0
0.2
0.6
0.0
0.6
0.6
0.0 | ¹Feet Above Confluence with Issaquah Creek FEDERAL EMERGENCY MANAGEMENT AGENCY KING COUNTY, WA AND INCORPORATED AREAS **FLOODWAY DATA** EAST FORK ISSAQUAH CREEK ²Elevation Computed Without Consideration of Backwater Effects | 39
190
90
294
189
300
125
128
144 | SECTION
AREA
(SQ.FEET)
137
136
197
552
290
400
116 | MEAN VELOCITY (FEET/SEC.) 2.9 2.1 1.7 1.1 1.2 1.1 2.6 | REGULATORY
(FEET NAVD)
53.0
59.9
66.1
66.8
67.4 | WITHOUT
FLOODWAY
(FEET NAVD)
53.0
59.9
66.1
66.8
67.4 | WITH FLOODWAY (FEET NAVD) 53.9 60.4 66.9 67.6 | (FEET) 0.9 0.5 0.8 0.8 | |---|---|--|---|--|---|--| | 39
190
90
294
189
300
125
128 | 137
136
197
552
290
400
116 | 2.9
2.1
1.7
1.1
1.2 | 53.0
59.9
66.1
66.8
67.4 | 53.0
59.9
66.1
66.8 | 53.9
60.4
66.9 | 0.9
0.5
0.8 | | 190
90
294
189
300
125
128 | 136
197
552
290
400
116 | 2.1
1.7
1.1
1.2
1.1 | 59.9
66.1
66.8
67.4 | 59.9
66.1
66.8 | 60.4
66.9 | 0.5
0.8 | | 190
90
294
189
300
125
128 | 136
197
552
290
400
116 | 2.1
1.7
1.1
1.2
1.1 | 59.9
66.1
66.8
67.4 | 59.9
66.1
66.8 | 60.4
66.9 | 0.5
0.8 | | 90
294
189
300
125
128 | 197
552
290
400
116 | 1.7
1.1
1.2
1.1 | 66.1
66.8
67.4 | 66.1
66.8 | 66.9 | 0.8 | | 294
189
300
125
128 | 552
290
400
116 | 1.1
1.2
1.1 | 66.8
67.4 | 66.8 | | | | 189
300
125
128 | 290
400
116 | 1.2
1.1 | 67.4 | | 67.6 | 0.8 | | 300
125
128 | 400
116 | 1.1 | | 67.4 | | 0.0 | | 125
128 | 116 | | | 07.4 | 68.3 | 0.9 | | 128 | | 2.6 | 68.9 | 68.9 | 69.9 | 1.0 | | | 4=0 | 2.0 | 71.5 | 71.5 | 72.0 | 0.5 | | 144 | 159 | 1.4 | 72.2 | 72.2 | 72.5 | 0.3 | | 1 7 7 | 100 | 2.4 | 75.9 | 75.9 | 76.1 | 0.2 | | 120 | 170 | 1.4 | 78.7 | 78.7 | 79.0 | 0.3 | | 150 | 157 | 2.1 | 80.0 | 80.0 | 80.4 | 0.4 | | 208 | 652 | 0.6 | 80.4 | 80.4 | 81.0 | 0.6 | | 170 | 65 | 4.7 | 82.7 | 82.7 | 82.7 | 0.0 | | 159 | 472 | | 87.9 | 87.9 | 87.9 | 0.0 | | 200 | 396 | | 88.7 | 88.7 | 89.0 | 0.3 | | 220 | 137 | 2.2 | 96.2 | 96.2 | 96.2 | 0.0 | | 207 | 90 | | 98.7 | 98.7 | 98.7 | 0.0 | | 120 | 56 | 3.6 | 105.3 | 105.3 | 105.6 | 0.3 | | | 170
159
200
220
207 | 170 65
159 472
200 396
220 137
207 90 | 170 65 4.7 159 472 1.0 200 396 1.2 220 137 2.2 207 90 1.8 | 170 65 4.7 82.7 159 472 1.0 87.9 200 396 1.2 88.7 220 137 2.2 96.2 207 90 1.8 98.7 | 170 65 4.7 82.7 82.7 159 472 1.0 87.9 87.9 200 396 1.2 88.7 88.7 220 137 2.2 96.2 96.2 207 90 1.8 98.7 98.7 | 170 65 4.7 82.7 82.7 82.7 159 472 1.0 87.9 87.9 87.9 200 396 1.2 88.7 88.7 89.0 220 137 2.2 96.2 96.2 96.2 207 90 1.8 98.7 98.7 98.7 | ¹Miles Above Mouth | 1, | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | |----------|-------------------------------------|----------------| | Ē | KING COUNTY WA | 1 LOODWAT DATA | | <u> </u> | Mito occiti i, WA | EVANS CREEK | | 6 | AND INCORPORATED AREAS | EVANO ONEEN | | FLOODING SO | DURCE | | FLOODWAY | | 1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION | | | | |---------------------------|--|--|--|---|---|---|---|--| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | FORBES CREEK | | | | | | | | | | A B C D E F G H - J K L M | 0.27
0.31
0.49
0.63
0.73
0.86
0.92
0.93
1.05
1.15
1.18
1.22
1.34 | 87
100
55
52
57
59
100
60
14
15
20
18
16 | 170
191
88
70
102
36
56
109
19
22
56
56
18 |
1.3
1.1
2.1
2.1
1.5
4.2
2.0
1.0
5.7
5.0
2.0
2.0
6.2 | 23.4
24.1
31.2
39.8
41.4
46.0
51.7
51.8
57.0
73.0
82.1
89.1
108.0 | 23.4
24.1
31.2
39.8
41.4
46.0
51.7
51.8
57.0
73.0
82.1
89.1
108.0 | 23.9
24.8
31.8
40.1
41.6
46.0
52.1
52.2
57.0
73.4
82.4
89.1
108.0 | 0.5
0.7
0.6
0.3
0.2
0.0
0.4
0.0
0.4
0.3
0.0
0.0 | ¹Miles Above Mouth | FEDERAL EMERGENCY MANAGEMENT AGENCY KING COUNTY, WA | FLOODWAY DATA | |--|---------------| | KING COUNTY, WA | FORBES CREEK | | AND INCORPORATED AREAS | FORBES CREEK | | FLOODING S | OURCE | | FLOODWAY | | 1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION | | | | |---------------|-----------------------|------------|-----------------|------------------|---|----------------------------------|-------------------|-----------------------| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY ² | WITHOUT
FLOODWAY ³ | WITH
FLOODWAY⁴ | INCREASE ⁵ | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | GREEN RIVER | | | | | | | | | | Α | 20,207 | 463 | 8,354 | 1.55 | 12.3 ⁶ | 9.0 | 9.0 | 0.0 | | В | 20,543 | 535 | 10,009 | 1.30 | 12.3 ⁶ | 9.0 | 9.0 | 0.0 | | С | 22,539 | 385 | 7,384 | 1.76 | 12.3 ⁶ | 9.1 | 9.1 | 0.0 | | D | 25,439 | 594 | 9,509 | 1.37 | 12.3 ⁶ | 9.2 | 9.2 | 0.0 | | Е | 27,373 | 753 | 11,015 | 1.18 | 12.3 ⁶ | 9.3 | 9.3 | 0.0 | | F | 28,246 | 394 | 5,501 | 2.36 | 12.3 ⁶ | 9.3 | 9.3 | 0.0 | | G | 29,209 | 246 | 3,819 | 3.40 | 12.3 ⁶ | 9.5 | 9.5 | 0.0 | | Н | 30,000 | 246 | 3,638 | 3.57 | 12.3 ⁶ | 9.7 | 9.7 | 0.0 | | 1 | 31,659 | 238 | 3,141 | 4.13 | 12.3 ⁶ | 10.3 | 10.3 | 0.0 | | J | 33,180 | 188 | 2,610 | 4.97 | 12.3 ⁶ | 11.2 | 11.2 | 0.0 | | K | 34,655 | 232 | 3,164 | 4.38 | 12.4 | 12.2 | 12.2 | 0.0 | | Ĺ | 36,119 | 225 | 2,832 | 4.58 | 13.1 | 12.9 | 12.9 | 0.0 | | M | 37,262 | 187 | 2,890 | 4.49 | 13.7 | 13.5 | 13.5 | 0.0 | | N | 38,342 | 193 | 2,882 | 4.50 | 14.2 | 14.0 | 14.0 | 0.0 | | 0 | 39,076 | 192 | 2,932 | 4.43 | 14.6 | 14.4 | 14.4 | 0.0 | | Р | 40,402 | 223 | 3,249 | 4.00 | 15.2 | 15.0 | 15.0 | 0.0 | | Q | 41,506 | 183 | 2,504 | 5.18 | 15.7 | 15.4 | 15.4 | 0.0 | | R | 42,557 | 228 | 3,045 | 4.26 | 16.4 | 16.1 | 16.1 | 0.0 | | S | 43,324 | 280 | 3,587 | 3.62 | 16.8 | 16.5 | 16.5 | 0.0 | | 1 | 44,823 | 324 | 3,884 | 3.34 | 17.4 | 17.2 | 17.2 | 0.0 | | U
V | 46,470
47,583 | 197
248 | 2,833
3,064 | 4.58
4.24 | 18.2
18.7 | 17.9
18.4 | 17.9
18.4 | 0.0
0.0 | | W | 48,843 | 246
211 | 2,675 | 4.24
4.85 | 19.3 | 19.0 | 19.0 | 0.0 | | X | 49,962 | 222 | 3,027 | 4.29 | 20.0 | 19.7 | 19.7 | 0.0 | | Ϋ́ | 50,893 | 204 | 3,147 | 4.12 | 20.4 | 20.1 | 20.1 | 0.0 | | Ž | 51,855 | 270 | 3,252 | 3.99 | 20.8 | 20.5 | 20.5 | 0.0 | | | | | | | | | | | ¹Feet Above Mouth with flows as extracted from FLO-2D Model for "Fail-all" levee scenario 4With Floodway elevations computed using HEC-RAS with flows as extracted from FLO-2D Model for floodway run ²Regulatory BFE computed using HEC-RAS with baseline geometry and flows ³Without Floodway elevations computed using HEC-RAS ⁵Increase computed as the difference between the simulated water levels for the "with" and "without" floodway scenarios (e.g. the "fail-all" levee scenario versus the floodway run) ⁶ Regulatory BFE below cross section J were set based on 1% chance tidal elevation at Seattle Station as computed by Seattle District USACE | FLOODING S | OURCE | | FLOODWAY | | 1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION | | | | |-----------------|-----------------------|--------|-----------------|------------------|---|----------------------------------|-------------------|-----------------------| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY ² | WITHOUT
FLOODWAY ³ | WITH
FLOODWAY⁴ | INCREASE ⁵ | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | GREEN RIVER | | | | | | | | | | AA | 52,857 | 267 | 3,301 | 3.93 | 21.2 | 20.9 | 20.9 | 0.0 | | AB | 53,754 | 180 | 3,066 | 4.23 | 21.5 | 21.2 | 21.3 | 0.1 | | AC | 54,886 | 170 | 2,839 | 4.57 | 22.0 | 21.6 | 21.7 | 0.1 | | AD | 55,673 | 215 | 3,130 | 4.15 | 22.4 | 22.0 | 22.1 | 0.1 | | AE | 56,380 | 216 | 2,678 | 4.85 | 22.6 | 22.3 | 22.4 | 0.1 | | AF | 57,121 | 208 | 3,109 | 4.17 | 23.1 | 22.8 | 22.8 | 0.1 | | AG^6 | 58,075 | 179 | 2,907 | 4.21 | 23.4 | 23.1 | 23.1 | 0.1 | | AH ⁶ | 59,039 | 153 | 2,592 | 4.23 | 23.8 | 23.5 | 23.5 | 0.0 | | Al^6 | 60,504 | 177 | 3,197 | 3.40 | 24.6 | 24.0 | 24.1 | 0.1 | | AJ ⁶ | 61,573 | 151 | 2,563 | 4.20 | 25.0 | 24.3 | 24.4 | 0.1 | | AK ⁶ | 62,609 | 183 | 3,081 | 3.50 | 25.6 | 24.7 | 24.9 | 0.2 | | AL ⁶ | 63,809 | 213 | 3,337 | 3.23 | 26.0 | 25.0 | 25.2 | 0.2 | | AM^6 | 64,489 | 161 | 3,117 | 3.45 | 26.2 | 25.1 | 25.4 | 0.2 | | AN^6 | 65,275 | 151 | 2,531 | 4.24 | 26.7 | 25.5 | 25.7 | 0.2 | | AO^6 | 66,328 | 173 | 2,736 | 3.91 | 27.2 | 25.9 | 26.2 | 0.3 | | AP^6 | 67,221 | 164 | 3,038 | 3.53 | 27.7 | 26.3 | 26.5 | 0.3 | | AQ^6 | 68,179 | 158 | 2,802 | 3.82 | 27.9 | 26.5 | 26.8 | 0.3 | | AR ⁶ | 68,933 | 159 | 2,523 | 4.24 | 28.3 | 26.8 | 27.0 | 0.3 | | AS^6 | 69,795 | 154 | 2,741 | 3.91 | 28.7 | 27.1 | 27.4 | 0.3 | | AT ⁶ | 70,518 | 164 | 2,727 | 3.93 | 29.0 | 27.3 | 27.7 | 0.3 | | AU ⁶ | 71,446 | 137 | 2,465 | 4.35 | 29.3 | 27.7 | 28.0 | 0.3 | | AV^6 | 72,628 | 156 | 2,601 | 4.11 | 29.9 | 28.1 | 28.4 | 0.3 | | AW ⁶ | 74,037 | 156 | 2,471 | 4.30 | 30.3 | 28.5 | 28.8 | 0.3 | | AX ⁶ | 75,556 | 162 | 2,835 | 4.10 | 30.8 | 28.9 | 29.2 | 0.3 | | AY^6 | 76,739 | 143 | 2,356 | 4.52 | 31.3 | 29.3 | 29.6 | 0.3 | | AZ^6 | 77,401 | 163 | 2,767 | 3.78 | 31.6 | 29.6 | 30.0 | 0.4 | ¹Feet Above Mouth ²Regulatory BFE computed using HEC-RAS with baseline geometry and flows ³Without Floodway elevations computed using HEC-RAS with flows as extracted from FLO-2D Model for "Fail-all" levee scenario 4With Floodway elevations computed using HEC-RAS with flows as extracted from FLO-2D Model for floodway run ⁵Increase computed as the difference between the simulated water levels for the "with " and "without" floodway scenarios (e.g. the "fail-all" levee scenario versus the floodway run) ⁶The data reflect the hydraulic characteristics of the main channel. The Springbrook Creek split floodway was analyzed using a combination of tools including the FLO-2D model and therefore corresponding hydraulic data is not available for the split flow reach. Section 3.2.8.2 and 4.2 of the FIS provide further information about the development of the split flow. | FLOODING S | OURCE | | FLOODWAY | | 1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION | | | | | |-----------------|-----------------------|--------|-----------------|------------------|---|----------------------------------|-------------------|-----------------------|--| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY ² | WITHOUT
FLOODWAY ³ | WITH
FLOODWAY⁴ | INCREASE ⁵ | | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | | GREEN RIVER | | | | | | | | | | | BA ⁶ | 77,870 | 146 | 2,372 | 4.41 | 31.7 | 29.7 | 30.0 | 0.4 | | | BB ⁶ | 78,852 | 155 | 2,578 | 4.03 | 32.1 | 30.1 | 30.4 | 0.3 | | | BC ⁶ | 79,728 | 154 | 2,575 | 4.07 | 32.4 | 30.3 | 30.6 | 0.3 | | | BD ⁶ | 81,335 | 160 | 2,547 | 4.28 | 32.9 | 30.7 | 31.1 | 0.3 | | | BE _e | 82,341 | 167 | 2,806 | 4.02 | 33.3 | 31.1 | 31.4 | 0.3 | | | BF ⁶ | 83,713 | 183 | 3,241 | 3.49 | 33.8 | 31.6 | 31.9 | 0.3 | | | BG ⁶ | 84,566 | 164 | 2,812 | 4.02 | 33.9 | 31.7 | 32.0 | 0.3 | | | BH ⁶ | 85,463 | 155 | 2,556 | 4.61 | 34.1 | 32.0 | 32.3 | 0.3 | | | BI ⁶ | 86,670 | 170 | 2,910 | 4.05 | 34.5 | 32.4 | 32.7 | 0.3 | | | BJ ⁶ | 87,744 | 191 | 3,110 | 3.82 | 34.8 | 32.7 | 33.0 | 0.3 | | | BK ⁶ | 88,703 | 156 | 2,602 | 4.65 | 35.0 | 32.9 | 33.2 | 0.3 | | | BL^6 | 89,786 | 219 | 3,306 | 3.77 | 35.4 | 33.4 | 33.7 | 0.3 | | | ВМ | 90,934 | 142 | 2,451 | 5.08 | 35.6 | 33.6 | 33.9 | 0.3 | | | BN | 92,018 | 165 | 2,721 | 4.58 | 36.0 | 34.1 | 34.5 | 0.4 | | | ВО | 93,067 | 160 | 2,727 | 4.57 | 36.3 | 34.4 | 34.8 | 0.4 | | | BP | 94,288 | 174 | 2,614 | 4.77 | 36.7 | 34.9 | 35.3 | 0.4 | | | BQ | 95,423 | 173 | 2,706 | 4.60 | 37.0 | 35.3 | 35.7 | 0.4 | | | BR | 96,696 | 179 | 3,450 | 3.61 | 37.4 | 35.7 | 36.2 | 0.4 | | | BS | 97,529 | 232 | 3,054 | 4.08 | 37.6 | 35.9 | 36.3 | 0.4 | | | BT | 98,269 | 181 | 2,479 | 5.03 | 37.7 | 36.1 | 36.5 | 0.4 | | | BU | 99,303 | 176 | 3,036 | 4.10 | 38.2 | 36.6 | 37.0 | 0.5 | | | BV | 100,715 | 154 | 2,802 | 4.46 | 38.5 | 37.0 | 37.5 | 0.5 | | | BW | 101,568 | 168 | 2,741 | 4.55 | 38.8 | 37.3 | 37.7 | 0.5 | | | BX | 102,469 | 169 | 2,849 | 4.38 | 39.1 | 37.6 | 38.1 | 0.5 | | | BY | 103,796 | 170 | 3,014 | 4.13 | 39.5 | 38.0 | 38.5 | 0.5 | | | BZ | 105,122 | 207 | 3,588 | 3.48 | 39.8 | 38.4 | 38.9 | 0.5 | | | | | | | | | | | | | ¹Feet Above Mouth ²Regulatory BFE computed using HEC-RAS with baseline geometry and flows ³Without Floodway elevations computed using HEC-RAS with flows as extracted from FLO-2D Model for "Fail-all" levee scenario 4With Floodway elevations computed using HEC-RAS with flows as extracted from FLO-2D Model for floodway run ⁵Increase computed as the difference between the simulated water levels for the "with " and "without" floodway scenarios (e.g. the "fail-all" levee scenario versus the floodway run) ⁶The data reflect the hydraulic characteristics of the main channel. The Springbrook Creek split floodway was analyzed using a combination of tools including the FLO-2D model and therefore corresponding hydraulic data is not available for the split flow reach. Section
3.2.8.2 and 4.2 of the FIS provide further information about the development of the split flow. | FLOODING S | OURCE | | FLOODWAY | | 1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION | | | | |-----------------|-----------------------|-----------------|------------------------------|---------------------------------|---|---|--|------------------------------| | CROSS SECTION | DISTANCE ¹ | WIDTH
(FEET) | SECTION
AREA
(SQ.FEET) | MEAN
VELOCITY
(FEET/SEC.) | REGULATORY ² (FEET NAVD) | WITHOUT FLOODWAY ³ (FEET NAVD) | WITH FLOODWAY ⁴ (FEET NAVD) | INCREASE ⁵ (FEET) | | GREEN RIVER | | (1 221) | (04.1221) | (1 LL 170LO.) | (I EET IVVD) | (122110(02) | (122110(02) | (1 == 1) | | CA | 106,309 | 181 | 3,020 | 4.13 | 40.0 | 38.6 | 39.1 | 0.5 | | СВ | 107,061 | 169 | 2,953 | 4.23 | 40.2 | 38.9 | 39.4 | 0.5 | | CC | 107,930 | 166 | 3,029 | 4.12 | 40.5 | 39.2 | 39.7 | 0.5 | | CD | 108,676 | 173 | 3,257 | 3.83 | 40.8 | 39.4 | 40.0 | 0.5 | | CE | 109,776 | 162 | 3,421 | 3.65 | 41.1 | 39.8 | 40.3 | 0.5 | | CF | 110,959 | 161 | 2,936 | 4.25 | 41.3 | 40.0 | 40.5 | 0.5 | | CG | 111,665 | 202 | 3,519 | 3.55 | 41.6 | 40.3 | 40.8 | 0.5 | | CH | 112,400 | 185 | 3,000 | 4.17 | 41.7 | 40.5 | 41.0 | 0.5 | | CI ⁶ | 113,008 | 182 | 3,005 | 4.12 | 42.0 | 40.8 | 41.3 | 0.5 | | CJ ⁶ | 113,746 | 194 | 3,215 | 3.63 | 42.2 | 41.0 | 41.5 | 0.5 | | CK ⁶ | 114,464 | 196 | 3,217 | 3.63 | 42.4 | 41.2 | 41.7 | 0.5 | | CL ⁶ | 115,242 | 147 | 2,827 | 4.12 | 42.6 | 41.4 | 41.9 | 0.5 | | CM ⁶ | 116,486 | 178 | 3,380 | 3.45 | 43.1 | 41.9 | 42.4 | 0.5 | | CN ⁶ | 117,618 | 174 | 3,048 | 3.86 | 43.4 | 42.2 | 42.6 | 0.5 | | CO ⁶ | 118,427 | 163 | 3,087 | 3.81 | 43.4 | 42.4 | 42.9 | 0.5 | | CP ⁶ | 119,669 | 186 | 3,192 | 3.69 | 43.9 | 42.7 | 43.2 | 0.5 | | CQ CQ | 120,429 | 199 | 3,090 | 3.81 | 44.1 | 42.9 | 43.4 | 0.5 | | CR | 121,584 | 185 | 3,221 | 3.66 | 44.5 | 43.2 | 43.7 | 0.5 | | CS | 122,375 | 202 | 3,209 | 3.68 | 44.7 | 43.4 | 43.9 | 0.5 | | CT | 123,160 | 173 | 2,775 | 4.25 | 44.9 | 43.7 | 44.2 | 0.5 | | CU | 123,956 | 188 | 3,313 | 3.57 | 45.3 | 44.1 | 44.6 | 0.5 | | CV | 124,874 | 156 | 2,849 | 4.16 | 45.5 | 44.3 | 44.8 | 0.5 | | CW | 125,794 | 175 | 2,973 | 4.18 | 46.0 | 44.8 | 45.3 | 0.5 | | CX | 126,924 | 134 | 2,586 | 4.80 | 46.4 | 45.2 | 45.7 | 0.5 | | CY | 128,056 | 168 | 2,821 | 4.40 | 47.1 | 45.9 | 46.4 | 0.5 | | CZ | 128,817 | 169 | 2,846 | 4.37 | 47.5 | 46.3 | 46.8 | 0.5 | | | | | | | | | | | ¹Feet Above Mouth FEDERAL EMERGENCY MANAGEMENT AGENCY KING COUNTY, WA AND INCORPORATED AREAS #### **FLOODWAY DATA** **GREEN RIVER** ²Regulatory BFE computed using HEC-RAS with baseline geometry and flows ³Without Floodway elevations computed using HEC-RAS with flows as extracted from FLO-2D Model for "Fail-all" levee scenario 4With Floodway elevations computed using HEC-RAS with flows as extracted from FLO-2D Model for floodway run ⁵Increase computed as the difference between the simulated water levels for the "with " and "without" floodway scenarios (e.g. the "fail-all" levee scenario versus the floodway run) ⁶ The data reflect only the hydraulic characteristics of the main channel. The floodway encompassing the Mill Creek/Mullen Slough floodplain was analyzed using the FLO-2D model and therefore cross sectional hydraulic data is not available for this area. Sections 3.2.8.2 and 4.2 of the FIS provide further information about the development of the Mill Creek floodway. | FLOODING S | OURCE | | FLOODWAY | | 1-1 | | AL-CHANCE FLO | OD | |---------------|-----------------------|--------|-----------------|------------------|-------------------------|----------------------------------|----------------------------|-----------------------| | 1 EOODING O | | | | | | | CE ELEVATION | | | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY ² | WITHOUT
FLOODWAY ³ | WITH FLOODWAY ⁴ | INCREASE ⁵ | | ODEEN DIVED | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | GREEN RIVER | 400 700 | 400 | 0.405 | F 04 | 47.0 | 40.7 | 47.0 | 0.5 | | DA | 129,780 | 139 | 2,485 | 5.01 | 47.9 | 46.7 | 47.2 | 0.5 | | DB | 130,492 | 191 | 2,862 | 4.35 | 48.3 | 47.1 | 47.7 | 0.6 | | DC | 131,142 | 156 | 2,579 | 4.83 | 48.6 | 47.4 | 48.0 | 0.6 | | DD | 132,419 | 168 | 3,056 | 4.07 | 49.2 | 48.0 | 48.7 | 0.6 | | DE | 133,265 | 184 | 2,934 | 4.25 | 49.7 | 48.5 | 49.1 | 0.6 | | DF | 134,161 | 174 | 3,068 | 4.06 | 50.0 | 48.8 | 49.5 | 0.7 | | DG | 134,902 | 167 | 2,885 | 4.32 | 50.3 | 49.1 | 49.7 | 0.7 | | DH | 136,498 | 154 | 2,767 | 4.51 | 50.9 | 49.7 | 50.4 | 0.7 | | DI | 137,249 | 183 | 2,870 | 4.33 | 51.3 | 50.1 | 50.8 | 0.7 | | DJ | 137,768 | 178 | 3,110 | 4.00 | 51.5 | 50.3 | 51.0 | 0.7 | | DK | 138,564 | 276 | 4,501 | 2.77 | 51.9 | 50.7 | 51.4 | 0.7 | | DL | 139,281 | 195 | 3,049 | 4.09 | 51.9 | 50.7 | 51.5 | 0.7 | | DM | 140,641 | 281 | 3,641 | 3.43 | 52.5 | 51.3 | 52.1 | 0.7 | | DN | 141,871 | 358 | 3,585 | 3.49 | 52.9 | 51.8 | 52.5 | 0.7 | | DO | 143,024 | 310 | 3,958 | 3.17 | 53.3 | 52.3 | 52.9 | 0.7 | | DP | 143,968 | 152 | 2,914 | 4.31 | 53.6 | 52.6 | 53.2 | 0.6 | | DQ | 144,741 | 501 | 6,592 | 1.91 | 54 | 53.0 | 53.6 | 0.6 | | DR | 145,834 | 232 | 3,030 | 4.16 | 54.1 | 53.2 | 53.8 | 0.6 | | DS | 146,211 | 155 | 2,083 | 6.05 | 54.2 | 53.3 | 53.8 | 0.6 | | DT | 146,953 | 279 | 3,510 | 3.60 | 55.0 | 54.1 | 54.7 | 0.5 | | DU | 147,885 | 659 | 6,253 | 2.02 | 55.4 | 54.6 | 55.1 | 0.5 | | DV | 148,950 | 221 | 2,460 | 5.16 | 55.7 | 54.9 | 55.4 | 0.5 | | DW | 149,946 | 193 | 2,656 | 4.79 | 56.3 | 55.6 | 56.1 | 0.4 | | DX | 151,250 | 168 | 2,226 | 5.73 | 57.0 | 56.4 | 56.8 | 0.4 | | DY | 152,282 | 155 | 2,043 | 6.23 | 57.8 | 57.2 | 57.6 | 0.4 | | DZ | 153,085 | 307 | 3,052 | 4.19 | 58.6 | 58.0 | 58.4 | 0.4 | | | , | | | | | | | | ¹Feet Above Mouth FEDERAL EMERGENCY MANAGEMENT AGENCY KING COUNTY, WA AND INCORPORATED AREAS **FLOODWAY DATA** **GREEN RIVER** ² Regulatory BFE computed using HEC-RAS with baseline geometry and flows. ³ Without Floodway elevations computed using HEC-RAS with flows as extracted from FLO-2D Model for "Fail-all" levee scenario 4With Floodway elevations computed using HEC-RAS with flows as extracted from FLO-2D Model for floodway run ⁵Increase computed as the difference between the simulated water levels for the "with" and "without" floodway scenarios (e.g. the "fail-all" levee scenario versus the floodway run) | FLOODING S | OURCE | | FLOODWAY | | 1- | | AL-CHANCE FLOO
CE ELEVATION | DD | |----------------|-----------------------|-----------------|------------------------------|---------------------------------|---|---|--|--------------------| | CROSS SECTION | DISTANCE ¹ | WIDTH
(FEET) | SECTION
AREA
(SQ.FEET) | MEAN
VELOCITY
(FEET/SEC.) | REGULATORY ² (FEET NAVD) | WITHOUT FLOODWAY ³ (FEET NAVD) | WITH FLOODWAY ⁴ (FEET NAVD) | INCREASE
(FEET) | | GREEN RIVER | | (- == -) | (0 4.11 == 1) | (* == :, == = :) | (* == * * * * * * * * * * * * * * * * * | (: == : : : : =) | (| () | | EA | 154,226 | 384 | 2,711 | 4.56 | 59.1 | 58.7 | 59.0 | 0.3 | | EB | 155,396 | 219 | 2,052 | 6.14 | 59.7 | 59.2 | 59.5 | 0.3 | | EC | 156,193 | 182 | 1,822 | 7.03 | 60.2 | 59.8 | 60.0 | 0.3 | | ED | 156,897 | 164 | 1,819 | 7.05 | 60.7 | 60.3 | 60.5 | 0.3 | | EE | 158,079 | 165 | 1,619 | 7.92 | 61.3 | 61.0 | 61.2 | 0.2 | | EF | 158,822 | 231 | 2,311 | 5.55 | 62.4 | 62.1 | 62.3 | 0.2 | | EG | 159,510 | 204 | 1,894 | 6.77 | 62.6 | 62.4 | 62.6 | 0.1 | | EH | 160,393 | 152 | 1,561 | 8.21 | 63.2 | 63.0 | 63.1 | 0.1 | | El | 161,505 | 164 | 1,625 | 7.89 | 64.4 | 64.3 | 64.4 | 0.1 | | EJ | 162,646 | 320 | 2,275 | 5.64 | 65.88 | 65.8 | 65.9 | 0.1 | | EK | 163,508 | 182 | 1,625 | 7.89 | 66.3 | 66.3 | 66.3 | 0.0 | | EL | 164,063 | 161 | 2,041 | 6.79 | 67.0 | 66.9 | 67.0 | 0.0 | | EM | 165,137 | 185 | 1,808 | 7.09 | 67.5 | 67.4 | 67.5 | 0.0 | | EN | 166,009 | 170 | 1,916 | 6.69 | 68.4 | 68.4 | 68.4 | 0.0 | | EO | 166,774 | 186 | 1,937 | 6.62 | 68.8 | 68.8 | 68.8 | 0.0 | | EP | 167,559 | 280 | 2,421 | 5.29 | 69.4 | 69.3 | 69.4 | 0.0 | | EQ | 168,451 | 166 | 1,806 | 7.10 | 69.62 | 69.6 | 69.6 | 0.0 | | ER | 169,353 | 685 | 4,667 | 2.75 | 70.5 | 70.5 | 70.5 | 0.0 | | ES | 170,280 | 169 | 1,831 | 7.00 | 70.4 | 70.4 | 70.5 | 0.0 | | ET | 170,876 | 351 | 2,780 | 4.61 | 71.2 | 71.2 | 71.3 | 0.0 | | EU | 171,743 | 1,119 | 6,448 | 1.99 | 72.1 | 72.1 | 72.1 | 0.0 | | EV | 172,540 | 450 | 1,830 | 7.01 | 71.9 | 71.9 | 71.9 | 0.0 | | EW | 173,355 | 937 | 3,651 | 3.51 | 75.2 | 75.2 | 75.2 | 0.0 | | EX | 174,460 | 537 | 2,428 | 5.28 | 76.8 | 76.8 | 76.8 | 0.0 | | EY | 175,554 | 209 | 1,658 | 7.73 | 78.4 | 78.4 | 78.4 | 0.0 | | EZ | 176,179 | 190 | 1,533 | 8.00 | 79.0 | 79.0 | 79.6 | 0.6 | | ot Abovo Mouth | | | puted using HEC BAS a | | | | and computed using UE | | ¹Feet Above Mouth ²Regulatory BFE computed using HEC-RAS with baseline geometry and flows ³Without Floodway elevations computed using HEC-RAS with flows as extracted from FLO-2D Model for "Fail-all" levee scenario ⁵Increase computed as the difference between the simulated water levels for the "with" and "without" floodway scenarios (e.g. the "fail-all" levee scenario versus the floodway run) | FLOODING S | OURCE | | FLOODWAY | | 1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION | | | | | |---------------|-----------------------|-----------------|------------------------------|---------------------------------|---|------------------------------------|---------------------------------|--------------------|--| | CROSS SECTION | DISTANCE ¹ | WIDTH
(FEET) | SECTION
AREA
(SQ.FEET) | MEAN
VELOCITY
(FEET/SEC.) | REGULATORY
(FEET NAVD) | WITHOUT
FLOODWAY
(FEET NAVD) | WITH
FLOODWAY
(FEET NAVD) |
INCREASE
(FEET) | | | GREEN RIVER | | (1 LL1) | (SQ.I LLI) | (I LL I/SLC.) | (ILLINAVD) | (ILLINAVD) | (ILLINAVD) | (1 LL1) | | | FA | 177,547 | 231 | 1,701 | 7.20 | 81.2 | 81.2 | 81.3 | 0.1 | | | FB | 178,864 | 940 | 5,398 | 2.30 | 82.5 | 82.5 | 83.3 | 0.8 | | | FC | 180,266 | 1,503 | 4,180 | 2.90 | 83.6 | 83.6 | 84.5 | 0.9 | | | FD | 181,817 | 1,349 | 3,643 | 3.40 | 85.1/86.5 ² | 85.1 ³ | 86.0 | 0.9 | | | FE | 182,832 | 262 | 1,457 | 8.40 | 88.2/88.6 ² | 88.2 ³ | 88.5 | 0.3 | | | FF | 184,216 | 318 | 2,445 | 5.00 | | | 92.0 | | | | | · · | | · · | | 91.0/91.7 ² | 91.0 ³ | | 1.0 | | | FG
 | 185,304 | 263 | 1,953 | 6.30 | 92.5/92.8 ² | 92.5 ³ | 93.5 | 1.0 | | | FH | 186,759 | 282 | 2,236 | 5.50 | 95.0 | 95.0 | 95.9 | 0.9 | | | FI
- | 188,034 | 231 | 1,647 | 7.40 | 97.2 | 97.2 | 97.6 | 0.4 | | | FJ | 188,447 | 576 | 3,544 | 3.50 | 98.2 | 98.2 | 99.0 | 0.8 | | | FK | 188,967 | 261 | 2,004 | 6.10 | 98.8 | 98.8 | 99.4 | 0.6 | | | FL | 190,144 | 313 | 1,923 | 6.40 | 100.8 | 100.8 | 101.6 | 0.8 | | | FM | 191,358 | 255 | 1,865 | 6.60 | 103.1 | 103.1 | 104.0 | 0.9 | | | FN | 192,134 | 238 | 1,794 | 6.80 | 105.0 | 105.0 | 105.3 | 0.3 | | | FO | 192,955 | 665 | 3,390 | 3.60 | 106.4 | 106.4 | 107.3 | 0.9 | | | FP | 193,966 | 595 | 3,444 | 3.60 | 107.4 | 107.4 | 108.4 | 1.0 | | | FQ | 195,104 | 417 | 1,508 | 8.10 | 109.4 | 109.4 | 109.5 | 0.1 | | | FR | 196,240 | 289 | 1,755 | 7.00 | 112.5 | 112.5 | 113.4 | 0.9 | | | FS | 196,978 | 726 | 3,972 | 3.10 | 114.2 | 114.2 | 115.2 | 1.0 | | | FT | 198,067 | 508 | 2,189 | 5.60 | 115.2 | 115.2 | 116.2 | 1.0 | | | FU | 198,927 | 518 | 2,789 | 4.40 | 118.2 | 118.2 | 118.3 | 0.1 | | | FV | 200,508 | 1,035 | 3,325 | 3.70 | 120.2 | 120.2 | 120.7 | 0.5 | | | FW | 201,334 | 853 | 2,659 | 4.60 | 121.9 | 121.9 | 122.0 | 0.1 | | | FX | 202,882 | 260 | 1,627 | 7.50 | 126.3 | 126.3 | 126.7 | 0.4 | | | FY | 203,990 | 724 | 1,859 | 6.60 | 130.1 | 130.1 | 130.7 | 0.6 | | | FZ | 205,669 | 2,565 | 6,882 | 1.80 | 133.3 | 133.3 | 133.6 | 0.3 | | | | | | | 3-, | | | | | | ¹Feet Above Mouth ²Landward of left levee/Riverward of levee ³Elevation computed without consideration of levees | FLOODING SO | OURCE | | FLOODWAY | | 1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION | | | | | |---------------|-----------------------|-----------------|------------------------------|---------------------------------|---|------------------------------------|---------------------------------|--------------------|--| | CROSS SECTION | DISTANCE ¹ | WIDTH
(FEET) | SECTION
AREA
(SQ.FEET) | MEAN
VELOCITY
(FEET/SEC.) | REGULATORY
(FEET NAVD) | WITHOUT
FLOODWAY
(FEET NAVD) | WITH
FLOODWAY
(FEET NAVD) | INCREASE
(FEET) | | | GREEN RIVER | | (1 LL 1) | (OQ.I LLI) | (1 LL 1/0LO.) | (I LLI IV/VD) | (ILLIIVIVD) | (ILLIIVIVD) | (1 LL 1) | | | GA | 207,091 | 1,897 | 3,571 | 3.40 | 134.1 | 134.1 | 134.2 | 0.1 | | | GB | 208,392 | 773 | 1,801 | 6.80 | 138.9 | 138.9 | 139.2 | 0.3 | | | GC | 209,681 | 594 | 3,116 | 3.90 | 143.8 | 143.8 | 144.6 | 0.8 | | | GD | 210,762 | 418 | 1,713 | 7.20 | 146.1 | 146.1 | 146.7 | 0.6 | | | GE | 211,124 | 292 | 1,386 | 8.80 | 147.7 | 147.7 | 147.8 | 0.1 | | | GF | 212,061 | 219 | 1,549 | 7.90 | 151.3 | 151.3 | 151.4 | 0.1 | | | GG | 213,420 | 234 | 1,221 | 10.00 | 156.2 | 156.2 | 156.2 | 0.0 | | | GH | 213,974 | 178 | 1,481 | 8.20 | 159.0 | 159.0 | 159.0 | 0.0 | | | GI | 215,224 | 162 | 1,151 | 10.50 | 162.5 | 162.5 | 162.8 | 0.3 | | | GJ | 216,549 | 392 | 2,174 | 5.60 | 168.2 | 168.2 | 168.2 | 0.0 | | | GK | 217,601 | 205 | 1,379 | 8.80 | 171.3 | 171.3 | 171.3 | 0.0 | | | GL | 218,555 | 191 | 1,480 | 8.20 | 174.3 | 174.3 | 174.3 | 0.0 | | | GM | 219,891 | 166 | 979 | 12.30 | 178.6 | 178.6 | 178.6 | 0.0 | | | GN | 221,292 | 204 | 1,417 | 8.50 | 186.5 | 186.5 | 186.5 | 0.0 | | | GO | 222,370 | 176 | 1,109 | 10.90 | 190.2 | 190.2 | 190.2 | 0.0 | | | GP | 223,543 | 213 | 1,456 | 8.30 | 195.6 | 195.6 | 195.7 | 0.1 | | | GQ | 224,575 | 230 | 1,589 | 7.60 | 198.6 | 198.6 | 198.7 | 0.1 | | | GR | 225,330 | 134 | 1,432 | 8.40 | 200.4 | 200.4 | 200.5 | 0.1 | | | GS | 226,549 | 223 | 1,610 | 7.50 | 203.7 | 203.7 | 203.9 | 0.2 | | | GT | 227,871 | 160 | 1,248 | 9.70 | 207.9 | 207.9 | 208.2 | 0.3 | | | GU | 229,144 | 308 | 1,980 | 6.10 | 213.0 | 213.0 | 213.4 | 0.4 | | | GV | 230,306 | 1,022 | 2,280 | 5.30 | 217.1 | 217.1 | 217.1 | 0.0 | | | GW | 231,741 | 812 | 2,873 | 4.20 | 222.3 | 222.3 | 222.3 | 0.0 | | | GX | 232,666 | 1,123 | 2,863 | 4.20 | 225.3 | 225.3 | 225.3 | 0.0 | | | GY | 234,104 | 471 | 2,597 | 4.70 | 229.5 | 229.5 | 229.5 | 0.0 | | | | | | | | | | | | | ¹Feet Above Mouth **TABLE 6** | FLOODING SO | DURCE | FLOODWAY | | | 1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION | | | | |-------------------|---|--|---|---|---|---|---|---| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | HOLDER CREEK | | | | | | | | | | A B C D E F G H I | 470
1,830
2,625
3,460
4,735
4,830
4,900
4,935
5,500 | 79
40
20
30
23
42
38
29
19 | 122
130
84
119
82
133
145
83
86 | 6.6
6.2
9.6
6.7
9.8
6.0
5.5
9.7
9.3 | 407.2
428.3
441.3
456.6
480.0
482.0
483.7
484.2
497.1 | 407.2
428.3
441.3
456.6
480.0
482.0
483.7
484.2
497.1 | 407.2
428.4
442.0
457.3
480.2
482.9
483.7
484.4
497.9 | 0.0
0.1
0.7
0.7
0.2
0.9
0.0
0.2
0.8 | ¹Feet Above Mouth | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | |-------------------------------------|---------------| | KING COUNTY, WA | TEOODWAT DATA | | KING COUNTT, WA | HOLDED CREEK | | AND INCORPORATED AREAS | HOLDER CREEK | | FLOODING S | OURCE | | FLOODWAY | | 1- | | AL-CHANCE FLOO
CE ELEVATION | OD | |----------------|-----------------------|--------|-----------------|------------------|-------------|---------------------|--------------------------------|----------| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | ISSAQUAH CREEK | | | | | | | | | | А | 950 | 1,950 | 2,974 | 2.2 | 38.1 | 38.1 | 38.1 | 0.0 | | В | 1,954 | 1,650 | 1,422 | 3.3 | 39.9 | 39.9 | 39.9 | 0.0 | | С | 3,590 | 1,000 | 936 | 3.4 | 46.5 | 46.5 | 46.5 | 0.0 | | D | 5,554 | 265 | 1,610 | 2.5 | 50.9 | 50.9 | 51.9 | 1.0 | | E | 6,517 | 255 | 1,534 | 2.6 | 53.1 | 53.1 | 54.1 | 1.0 | | F | 7,095 | 273 | 1,492 | 2.6 | 54.2 | 54.2 | 55.0 | 0.8 | | G | 7,855 | 127 | 884 | 4.0 | 57.9 | 57.9 | 58.8 | 0.9 | | Н | 8,716 | 210 | 970 | 4.3 | 59.8 | 59.8 | 60.7 | 0.9 | | I | 9,458 | 62 | 535 | 6.7 | 62.0 | 62.0 | 62.8 | 0.8 | | J | 9,828 | 86 | 787 | 4.5 | 64.1 | 64.1 | 64.7 | 0.6 | | K | 10,078 | 86 | 705 | 5.1 | 64.6 | 64.6 | 65.2 | 0.6 | | L | 10,507 | 88 | 797 | 4.5 | 65.5 | 65.5 | 66.3 | 0.8 | | M | 10,867 | 93 | 831 | 5.0 | 67.2 | 67.2 | 68.0 | 0.8 | | N | 11,402 | 81 | 742 | 5.6 | 68.8 | 68.8 | 69.5 | 0.7 | | 0 | 11,869 | 71 | 611 | 6.8 | 70.4 | 70.4 | 71.0 | 0.6 | | Р | 12,193 | 115 | 792 | 5.3 | 71.6 | 71.6 | 72.1 | 0.5 | | Q | 12,750 | 71 | 585 | 7.1 | 73.0 | 73.0 | 73.7 | 0.7 | | R | 13,033 | 210 | 1,063 | 3.9 | 73.9 | 73.9 | 74.9 | 1.0 | | S | 13,454 | 123 | 690 | 6.0 | 74.5 | 74.5 | 75.4 | 0.9 | | Т | 13,727 | 89 | 558 | 7.5 | 76.6 | 76.6 | 77.4 | 0.8 | | U | 14,021 | 59 | 557 | 6.0 | 79.5 | 79.5 | 80.2 | 0.7 | | V | 14,693 | 195 | 969 | 3.5 | 83.5 | 83.5 | 84.3 | 0.8 | | W | 15,157 | 58 | 641 | 5.2 | 84.9 | 84.9 | 85.8 | 0.9 | | X | 15,518 | 68 | 623 | 5.4 | 86.0 | 86.0 | 86.9 | 0.9 | | Y | 16,199 | 77 | 689 | 4.9 | 88.6 | 88.6 | 89.3 | 0.7 | | Z | 16,752 | 61 | 536 | 6.3 | 90.2 | 90.2 | 90.9 | 0.7 | | | | | | | | | | | | | | l . | | | l | | | | ¹Feet Above Mouth | FLOODING SO | OURCE | | FLOODWAY | | 1- | | AL-CHANCE FLOO
CE ELEVATION | OD | |----------------|-----------------------|--------|-----------------|------------------|-------------|---------------------|--------------------------------|----------| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | ISSAQUAH CREEK | | | | | | | | | | AA | 17,344 | 97 | 609 | 5.5 | 91.7 | 91.7 | 92.5 | 0.8 | | AB | 17,469 | 64 | 560 | 6.0 | 92.3 | 92.3 | 93.0 | 0.7 | | AC | 17,744 | 110 | 575 | 5.8 | 94.9 | 94.9 | 95.3 | 0.4 | | AD | 17,950 | 110 | 552 | 6.1 | 95.2 | 95.2 | 95.7 | 0.5 | | AE | 18,436 | 85 | 521 | 6.4 | 96.2 | 96.2 | 96.6 | 0.4 | | AF | 18,734 | 100 | 494 | 6.7 | 96.4 | 96.4 | 97.2 | 0.8 | | AG | 19,019 | 125 | 502 | 6.6 | 97.5 | 97.5 | 98.1 | 0.6 | | AH | 19,214 | 152 | 991 | 3.3 | 98.9 | 98.9 | 99.3 | 0.4 | | Al | 19,814 | 60 | 401 | 8.3 | 101.0 | 101.0 | 101.8 | 0.8 | | AJ | 20,439 | 69 | 508 | 6.5 | 103.9 | 103.9 | 104.9 | 1.0 | | AK | 20,953 | 79 | 516 | 6.4 | 105.5 | 105.5 | 106.2 | 0.7 | | AL | 21,223 | 102 | 633 | 5.2 | 106.2 | 106.2 | 107.0 | 0.8 | | AM | 21,761 | 82 | 532 | 6.1 | 117.3 | 117.3 | 117.6 | 0.3 | | AN | 22,914 | 351 | 1,852 | 1.8 | 120.8 | 120.8 | 121.7 | 0.9 | | AO | 23,852 | 483 | 1,876 | 1.7 |
123.9 | 123.9 | 124.6 | 0.7 | | AP | 24,254 | 475 | 2,235 | 1.5 | 125.3 | 125.3 | 126.3 | 1.0 | | AQ | 24,687 | 524 | 1,154 | 2.8 | 126.7 | 126.7 | 127.5 | 0.8 | | AR | 25,056 | 755 | 1,971 | 1.7 | 128.8 | 128.8 | 129.8 | 1.0 | | AS | 25,980 | 97 | 558 | 5.7 | 134.3 | 134.3 | 135.2 | 0.9 | | AT | 26,749 | 53 | 394 | 8.0 | 136.8 | 136.8 | 137.4 | 0.6 | | AU | 27,306 | 85 | 472 | 6.4 | 138.3 | 138.3 | 138.9 | 0.6 | | AV | 27,875 | 46 | 291 | 10.3 | 141.0 | 141.0 | 141.2 | 0.2 | | AW | 28,169 | 48 | 283 | 10.6 | 142.5 | 142.5 | 142.5 | 0.0 | | AX | 28,399 | 49 | 321 | 9.3 | 143.7 | 143.7 | 144.1 | 0.4 | | AY | 28,699 | 66 | 496 | 6.2 | 147.2 | 147.2 | 148.2 | 1.0 | | AZ | 29,227 | 73 | 618 | 4.9 | 149.3 | 149.3 | 150.3 | 1.0 | | | | | | | | | | | | | | | | | l | | | | ¹Feet Above Mouth | FLOODING SO | OURCE | | FLOODWAY | | 1- | | AL-CHANCE FLOO
CE ELEVATION | OD | |----------------|-----------------------|--------|-----------------|------------------|-------------|---------------------|--------------------------------|----------| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | ISSAQUAH CREEK | | | | | | | | | | BA | 29,755 | 98 | 582 | 5.2 | 150.1 | 150.1 | 151.1 | 1.0 | | BB | 30,389 | 79 | 488 | 6.3 | 153.0 | 153.0 | 153.6 | 0.6 | | BC | 31,445 | 85 | 463 | 6.6 | 156.4 | 156.4 | 156.6 | 0.2 | | BD | 32,501 | 84 | 476 | 6.4 | 159.6 | 159.6 | 159.9 | 0.3 | | BE | 33,715 | 163 | 569 | 5.3 | 163.6 | 163.6 | 163.8 | 0.2 | | BF | 34,771 | 170 | 452 | 6.4 | 170.3 | 170.3 | 170.8 | 0.5 | | BG | 36,091 | 292 | 826 | 3.5 | 179.2 | 179.2 | 180.2 | 1.0 | | BH | 37,253 | 74 | 294 | 9.8 | 185.7 | 185.7 | 185.7 | 0.0 | | BI | 37,515 | 74 | 449 | 6.4 | 192.4 | 192.4 | 192.5 | 0.1 | | BJ | 38,412 | 103 | 389 | 7.4 | 194.8 | 194.8 | 194.8 | 0.0 | | BK | 38,993 | 119 | 368 | 7.8 | 200.5 | 200.5 | 200.7 | 0.2 | | BL | 39,521 | 52 | 198 | 14.5 | 203.8 | 203.8 | 204.0 | 0.2 | | BM | 40,313 | 120 | 510 | 5.6 | 214.5 | 214.5 | 214.5 | 0.0 | | BN | 41,369 | 96 | 344 | 8.4 | 222.2 | 222.2 | 222.2 | 0.0 | | ВО | 42,636 | 52 | 280 | 10.3 | 227.6 | 227.6 | 227.6 | 0.0 | | BP | 42,751 | 68 | 386 | 6.3 | 229.2 | 229.2 | 229.2 | 0.0 | | BQ | 43,032 | 67 | 243 | 10.0 | 231.8 | 231.8 | 232.0 | 0.2 | | BR | 43,402 | 45 | 281 | 7.2 | 233.4 | 233.4 | 234.4 | 1.0 | | BS | 44,194 | 43 | 175 | 11.6 | 237.5 | 237.5 | 237.5 | 0.0 | | ВТ | 45,197 | 40 | 232 | 8.7 | 243.8 | 243.8 | 244.1 | 0.3 | | BU | 45,355 | 39 | 182 | 11.1 | 244.4 | 244.4 | 244.7 | 0.3 | | BV | 45,461 | 44 | 374 | 5.4 | 248.9 | 248.9 | 248.9 | 0.0 | | BW | 45,566 | 41 | 340 | 5.9 | 249.0 | 249.0 | 249.0 | 0.0 | | BX | 46,728 | 32 | 159 | 12.7 | 252.0 | 252.0 | 252.0 | 0.0 | | BY | 47,520 | 37 | 188 | 10.7 | 259.2 | 259.2 | 259.7 | 0.5 | | BZ | 48,946 | 50 | 224 | 9.0 | 268.6 | 268.6 | 268.8 | 0.2 | ¹Feet Above Mouth | FLOODING SO | DURCE | | FLOODWAY | | 1-1 | - | AL-CHANCE FLO | OD | |----------------|-----------------------|--------|-----------------|------------------|-------------|---------------------|------------------|----------| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | ISSAQUAH CREEK | | | | | | | | | | CA | 50,002 | 114 | 350 | 5.8 | 273.0 | 273.0 | 273.5 | 0.5 | | СВ | 50,952 | 219 | 388 | 5.2 | 279.0 | 279.0 | 279.0 | 0.0 | | CC | 51,797 | 48 | 182 | 11.1 | 284.4 | 284.4 | 284.5 | 0.1 | | CD | 52,800 | 132 | 433 | 4.7 | 291.5 | 291.5 | 292.3 | 0.8 | | CE | 52,958 | 42 | 235 | 8.1 | 292.5 | 292.5 | 293.5 | 1.0 | | CF | 53,011 | 42 | 216 | 8.9 | 294.9 | 294.9 | 294.9 | 0.0 | | CG | 53,117 | 192 | 634 | 3.0 | 296.4 | 296.4 | 296.4 | 0.0 | | CH | 53,222 | 38 | 271 | 7.1 | 296.6 | 296.6 | 296.7 | 0.1 | | CI | 53,381 | 184 | 885 | 2.2 | 297.8 | 297.8 | 298.0 | 0.2 | | CJ | 54,595 | 125 | 247 | 7.7 | 303.7 | 303.7 | 303.7 | 0.0 | | CK | 55,335 | 165 | 554 | 3.4 | 308.6 | 308.6 | 309.6 | 1.0 | | CL | 56,285 | 193 | 320 | 6.0 | 314.1 | 314.1 | 314.3 | 0.2 | | CM | 56,602 | 41 | 251 | 7.6 | 316.1 | 316.1 | 317.1 | 1.0 | | CN | 57,922 | 39 | 213 | 9.0 | 324.8 | 324.8 | 325.2 | 0.4 | | СО | 59,664 | 51 | 267 | 6.2 | 335.1 | 335.1 | 336.0 | 0.9 | | СР | 59,770 | 45 | 233 | 7.2 | 335.7 | 335.7 | 336.5 | 0.8 | | CQ | 59,822 | 51 | 340 | 4.9 | 338.0 | 338.0 | 338.2 | 0.2 | | CR | 59,875 | 54 | 332 | 5.0 | 338.4 | 338.4 | 338.4 | 0.0 | | CS | 61,037 | 40 | 172 | 9.7 | 342.9 | 342.9 | 343.3 | 0.4 | | СТ | 62,515 | 58 | 242 | 6.9 | 355.4 | 355.4 | 356.3 | 0.9 | | CU | 63,571 | 53 | 269 | 6.2 | 362.7 | 362.7 | 363.7 | 1.0 | | CV | 65,102 | 35 | 186 | 9.0 | 379.0 | 379.0 | 379.0 | 0.0 | | CW | 66,528 | 47 | 283 | 5.9 | 391.4 | 391.4 | 392.3 | 0.9 | ¹Feet Above Mouth | FLOODING SO | OURCE | | FLOODWAY | | 1- | | AL-CHANCE FLOO
CE ELEVATION | OD | |---------------|-----------------------|--------|-----------------|------------------|-------------|---------------------|--------------------------------|----------| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | Kelsey Creek | | | | | | | | | | Α | 0 | 57 | 179 | 10.7 | 20.7 | 20.7 | 20.7 | 0.0 | | В | 699 | 66 | 475 | 2.4 | 29.5 | 29.5 | 29.5 | 0.0 | | С | 958 | 119 | 771 | 1.5 | 30.1 | 30.1 | 30.1 | 0.0 | | D | 1,196 | 86 | 586 | 3.3 | 30.8 | 30.8 | 30.8 | 0.0 | | E | 1,340 | 81 | 603 | 2.3 | 31.7 | 31.7 | 31.7 | 0.0 | | F | 1,744 | 210 | 1,593 | 0.7 | 31.8 | 31.8 | 31.8 | 0.0 | | G | 2,284 | 225 | 835 | 4.9 | 31.7 | 31.7 | 31.7 | 0.0 | | Н | 2,608 | 150 | 1,129 | 1.0 | 32.7 | 32.7 | 32.8 | 0.0 | | I | 2,813 | 128 | 987 | 1.2 | 32.9 | 32.9 | 32.8 | 0.0 | | J | 2,898 | 149 | 1,047 | 0.7 | 33.0 | 33.0 | 33.0 | 0.1 | | K | 3,883 | 179 | 1,183 | 0.6 | 33.0 | 33.0 | 33.1 | 0.1 | | L | 4,544 | 352 | 1,907 | 0.4 | 33.1 | 33.1 | 33.2 | 0.1 | | M | 5,213 | 100 | 482 | 1.1 | 33.2 | 33.2 | 33.4 | 0.2 | | N | 5,973 | 200 | 687 | 0.7 | 33.5 | 33.5 | 34.1 | 0.5 | | 0 | 7,052 | 155 | 166 | 3.1 | 38.9 | 38.9 | 39.5 | 0.6 | | Р | 7,623 | 141 | 144 | 3.5 | 43.6 | 43.6 | 44.1 | 0.5 | | Q | 8,753 | 89 | 135 | 4.2 | 55.8 | 55.8 | 56.1 | 0.4 | | R | 9,068 | 70 | 161 | 3.2 | 58.8 | 58.8 | 59.4 | 0.6 | | S | 10,084 | 29 | 62 | 5.2 | 66.1 | 66.1 | 66.1 | 0.0 | | Т | 10,700 | 25 | 87 | 5.9 | 75.7 | 75.7 | 75.9 | 0.1 | | U | 11,694 | 36 | 86 | 5.8 | 88.0 | 88.0 | 88.0 | 0.0 | | V | 12,021 | 23 | 70 | 7.0 | 89.6 | 89.6 | 89.6 | 0.0 | | W | 12,520 | 18 | 69 | 7.2 | 97.7 | 97.7 | 97.7 | 0.0 | | X | 13,342 | 24 | 66 | 7.5 | 112.6 | 112.6 | 112.6 | 0.0 | | Y | 13,567 | 63 | 77 | 6.3 | 122.9 | 122.9 | 122.9 | 0.0 | | Z | 13,833 | 75 | 136 | 3.6 | 125.3 | 125.3 | 125.3 | 0.0 | | | | | | | | | | | ¹Feet above confluence with Mercer Slough | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | |-------------------------------------|-----------------| | KING COUNTY, WA | I LOODIIAI DAIA | | KING COUNTI, WA | KELSEY CREEK | | AND INCORPORATED AREAS | RELOCI CREEK | | FLOODING SO | OURCE | | FLOODWAY | | 1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION | | | | | |--------------------|-----------------------|--------|-----------------|------------------|---|---------------------|------------------|---------|--| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREAS | | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | | Kelsey Creek | | | | | | | | | | | AA | 14,488 | 37 | 63 | 7.6 | 133.7 | 133.7 | 133.8 | 0.0 | | | AB | 14,643 | 51 | 91 | 5.3 | 135.7 | 135.7 | 135.7 | 0.0 | | | AC | 15,691 | 44 | 97 | 5.0 | 150.0 | 150.0 | 150.0 | 0.0 | | | AD | 16,063 | 51 | 53 | 9.1 | 155.0 | 155.0 | 155.0 | 0.0 | | | AE | 16,433 | 31 | 58 | 8.3 | 162.2 | 162.2 | 162.2 | 0.0 | | | AF | 17,097 | 18 | 46 | 9.7 | 171.4 | 171.4 | 171.4 | 0.0 | | | AG | 17,834 | 39 | 88 | 5.1 | 184.0 | 184.0 | 184.0 | 0.0 | | | AH | 17,921 | 39 | 72 | 6.2 | 184.6 | 184.6 | 184.6 | 0.0 | | | Al | 18,362 | 19 | 70 | 2.4 | 194.1 | 194.1 | 194.2 | 0.1 | | | AJ | 20,519 | 15 | 28 | 6.0 | 230.1 | 230.1 | 230.3 | 0.2 | | | AK | 21,061 | 18 | 23 | 7.1 | 240.2 | 240.2 | 240.2 | 0.0 | | | AL | 21,354 | 22 | 38 | 5.3 | 244.5 | 244.5 | 244.5 | 0.0 | | | AM | 21,466 | 55 | 207 | 3.2 | 248.1 | 248.1 | 248.1 | 0.0 | | | AN | 21,683 | 20 | 72 | 2.3 | 249.5 | 249.5 | 249.6 | 0.0 | | | AO | 21,983 | 59 | 226 | 0.7 | 251.2 | 251.2 | 251.2 | 0.0 | | | AP | 22,496 | 194 | 455 | 1.3 | 251.2 | 251.2 | 251.3 | 0.0 | | | AQ | 23,194 | 150 | 437 | 1.4 | 251.9 | 251.9 | 252.0 | 0.0 | | | AR-BB ² | ¹Feet above confluence with Mercer Slough ² Floodway not computed | 7, | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | |----|-------------------------------------|-----------------| | ĮΈ | KING COUNTY, WA | 1 EGGDIIAI DAIA | | im | • | KELSEY CREEK | | ဝ | AND INCORPORATED AREAS | | | FLOODING SO | OURCE | | FLOODWAY | | 1-1 | | AL-CHANCE FLOO
CE ELEVATION | OD | |-------------------|-----------------------|--------|-----------------|------------------|-------------|----------------------------------|--------------------------------|----------| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY ² | WITH
FLOODWAY ² | INCREASE | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) |
(FEET) | | LITTLE BEAR CREEK | | | | | | | | | | А | 40 | 39 | 289 | 1.7 | 27.7 | 27.4 | 27.4 | 0.0 | | В | 177 | 8 | 78 | 6.4 | 29.2 | 29.2 | 29.2 | 0.0 | | С | 427 | 14 | 97 | 5.2 | 30.0 | 30.0 | 30.3 | 0.3 | | D | 577 | 24 | 70 | 7.1 | 29.9 | 29.9 | 30.6 | 0.7 | | E | 617 | 19 | 52 | 9.6 | 30.9 | 30.9 | 30.9 | 0.0 | | F | 764 | 39 | 182 | 2.7 | 36.9 | 36.9 | 37.0 | 0.1 | | G | 849 | 31 | 102 | 4.9 | 36.9 | 36.9 | 37.0 | 0.1 | | Н | 949 | 49 | 124 | 4.4 | 37.4 | 37.4 | 37.5 | 0.1 | | I | 1,059 | 55 | 247 | 2.3 | 39.9 | 39.9 | 39.9 | 0.0 | | J | 1,159 | 44 | 179 | 3.2 | 40.1 | 40.1 | 40.1 | 0.0 | | K | 1,199 | 50 | 194 | 2.9 | 40.1 | 40.1 | 40.1 | 0.0 | | L | 1,224 | 31 | 137 | 4.1 | 40.1 | 40.1 | 40.1 | 0.0 | | M | 1,413 | 26 | 157 | 3.6 | 41.8 | 41.8 | 41.8 | 0.0 | | N | 1,493 | 31 | 183 | 3.1 | 41.9 | 41.9 | 42.0 | 0.1 | | 0 | 1,773 | 32 | 109 | 5.2 | 42.1 | 42.1 | 42.2 | 0.1 | | Р | 1,979 | 11 | 51 | 11.0 | 46.4 | 46.4 | 46.8 | 0.4 | | Q | 2,103 | 24 | 174 | 3.3 | 49.3 | 49.3 | 49.3 | 0.0 | | R | 2,792 | 20 | 104 | 5.4 | 51.9 | 51.9 | 52.7 | 0.8 | | S | 3,642 | 34 | 130 | 4.4 | 57.3 | 57.3 | 57.7 | 0.4 | | Т | 4,602 | 38 | 89 | 6.4 | 64.5 | 64.5 | 64.9 | 0.4 | | U | 5,122 | 28 | 129 | 4.4 | 68.0 | 68.0 | 69.0 | 1.0 | | V | 5,962 | 24 | 94 | 6.0 | 72.9 | 72.9 | 73.5 | 0.6 | | W | 6,652 | 45 | 303 | 1.8 | 84.5 | 84.5 | 84.5 | 0.0 | | X | 7,052 | 24 | 111 | 4.8 | 84.7 | 84.7 | 85.2 | 0.5 | | Υ | 7,452 | 36 | 175 | 3.1 | 87.2 | 87.2 | 88.2 | 1.0 | | Z | 7,762 | 23 | 148 | 3.6 | 94.3 | 94.3 | 94.3 | 0.0 | | | | | | | | | | | ¹Feet Above Mouth FEDERAL EMERGENCY MANAGEMENT AGENCY KING COUNTY, WA AND INCORPORATED AREAS **FLOODWAY DATA** LITTLE BEAR CREEK ²Elevations Computed With Consideration of 25-Year Sammamish River Backwater Elevation | FLOODING SO | DURCE | | FLOODWAY | | 1- | | AL-CHANCE FLO | OD | |-------------------|------------------------------------|----------------------|-------------------------|--------------------------|---------------------------------|----------------------------------|---------------------------------|--------------------------| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY ² | WITH
FLOODWAY ² | INCREASE | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | LITTLE BEAR CREEK | | | | | | | | | | AA AB AC AD | 8,162
9,522
10,562
10,742 | 27
21
23
46 | 150
73
136
247 | 3.6
7.4
4.0
2.2 | 94.8
104.5
114.0
114.5 | 94.8
104.5
114.0
114.5 | 95.8
105.3
114.6
115.1 | 1.0
0.8
0.6
0.6 | | | | | | | | | | | ¹Feet Above Mouth FEDERAL EMERGENCY MANAGEMENT AGENCY TABLE 6 KING COUNTY, WA AND INCORPORATED AREAS **FLOODWAY DATA** LITTLE BEAR CREEK ²Elevations Computed With Consideration of 25-Year Sammamish River Backwater Elevation | FLOODING SO | DURCE | | FLOODWAY | | 1- | | AL-CHANCE FLO | OD | |------------------|-----------------------|--------|-----------------|------------------|-------------|---------------------|------------------|----------| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | LONGFELLOW CREEK | | | | | | | | | | А | 11,210 | 9 | 84 | 4.5 | 120.5 | 120.5 | 120.5 | 0.0 | | В | 11,360 | 31 | 197 | 1.9 | 120.8 | 120.8 | 120.9 | 0.1 | | С | 11,650 | 18 | 71 | 5.3 | 120.8 | 120.8 | 120.9 | 0.1 | | D | 12,150 | 54 | 145 | 2.6 | 122.4 | 122.4 | 123.4 | 1.0 | | Е | 12,380 | 15 | 64 | 5.4 | 125.8 | 125.8 | 126.7 | 0.9 | | F | 12,650 | 12 | 54 | 6.5 | 127.1 | 127.1 | 128.0 | 0.9 | | G | 12,810 | 13 | 59 | 5.3 | 128.0 | 128.0 | 129.0 | 1.0 | | Н | 12,920 | 14 | 88 | 3.5 | 131.3 | 131.3 | 132.3 | 1.0 | | 1 | 13,100 | 11 | 57 | 5.4 | 131.5 | 131.5 | 132.5 | 1.0 | | J | 13,780 | 12 | 37 | 8.4 | 135.7 | 135.7 | 136.2 | 0.5 | | K | 14,230 | 19 | 49 | 6.3 | 140.4 | 140.4 | 141.4 | 1.0 | | L | 14,290 | 12 | 41 | 7.6 | 141.5 | 141.5 | 141.7 | 0.2 | | M | 14,410 | 39 | 130 | 2.4 | 143.3 | 143.3 | 144.2 | 0.9 | | N | 14,830 | 13 | 43 | 7.2 | 144.1 | 144.1 | 144.8 | 0.7 | | 0 | 15,010 | 41 | 212 | 1.4 | 150.2 | 150.2 | 151.2 | 1.0 | | Р | 15,280 | 48 | 223 | 1.3 | 150.5 | 150.5 | 151.4 | 0.9 | | Q | 15,475 | 36 | 126 | 2.3 | 152.2 | 152.2 | 153.2 | 1.0 | | R | 16,200 | 21 | 57 | 5.0 | 154.9 | 154.9 | 155.6 | 0.7 | | S | 16,230 | 10 | 50 | 5.6 | 155.6 | 155.6 | 155.8 | 0.2 | | Т | 16,480 | 70 | 308 | 0.9 | 162.1 | 162.1 | 163.1 | 1.0 | | U | 16,850 | 18 | 38 | 7.4 | 162.6 | 162.6 | 163.1 | 0.5 | | V | 17,165 | 13 | 46 | 6.1 | 169.2 | 169.2 | 169.5 | 0.3 | | W | 17,245 | 25 | 78 | 3.6 | 170.1 | 170.1 | 170.6 | 0.5 | | X | 19,555 | 12 | 20 | 7.4 | 230.1 | 230.1 | 230.1 | 0.0 | | Υ | 19,835 | 10 | 18 | 7.7 | 236.1 | 236.1 | 236.1 | 0.0 | | Z | 20,455 | 35 | 45 | 3.1 | 245.0 | 245.0 | 245.0 | 0.0 | | AA | 21,575 | 13 | 23 | 6.1 | 256.8 | 256.8 | 256.8 | 0.0 | ¹Feet Above Mouth | FLOODING SO | DURCE | | | | 1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION | | | | |--------------------------------------|--|--|--|--|--|--|--|--| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT | WITH
FLOODWAY | INCREASE | | LOWER OVERFLOW | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | A
B
C
D
E
F
G
H | 1,280
2,380
3,155
3,855
4,805
5,855
6,555
6,980 | 203
126
147
99
95
162
306
192 | 1,443
586
331
281
274
556
1,258
325 | 1.0
2.4
4.2
5.0
5.1
4.1
1.8
7.1 | 432.5
437.6
438.8
440.4
443.9
451.1
452.4
454.6 | 431.2 ² 433.4 ² 435.8 ² 440.1 ² 443.9 451.1 452.4 452.7 ² | 432.0 ² 434.1 ² 436.4 ² 440.1 ² 444.0 452.0 453.0 453.7 ² | 0.8
0.7
0.6
0.0
0.1
0.9
0.6
1.0 | ¹Feet Above Convergence with Middle Fork Snoqualmie River FEDERAL EMERGENCY MANAGEMENT AGENCY KING COUNTY, WA AND INCORPORATED AREAS **FLOODWAY DATA** **LOWER OVERFLOW** ²Elevations Computed Without Backwater Effects from Middle Fork Snoqualmie River | FLOODING SC | URCE | FLOODWAY | | | 1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION | | | | |-------------|---|---|--|---|---|--|---|--| | SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | EY CREEK | | | | | | | | | | A B C D E F | 100
175
240
550
885
990
1,440 | 27
55
28
64
29
58
98 | 197
270
178
257
126
208
324 | 5.7
4.2
6.3
4.4
9.0
5.4
3.5 | 926.6
926.6
926.6
926.6
926.6
926.8 | 920.2 ²
920.9 ²
921.6 ²
922.3 ²
923.4 ²
925.6 ²
926.8 | 921.2 ²
921.9 ²
922.1 ²
923.1 ²
924.3 ²
925.6 ²
927.6 | 1.0
1.0
0.5
0.8
0.9
0.0
0.8 | | | SECTION EY CREEK A B C D E | SECTION DISTANCE ¹ EY CREEK A 100 B 175 C 240 D 550 E 885 F 990 | SECTION DISTANCE ¹ WIDTH (FEET) EY CREEK A 100 27 B 175 55 C 240 28 D 550 64 E 885 29 F 990 58 | SECTION DISTANCE ¹ WIDTH AREA (SQ.FEET) EY CREEK A 100 27 197 B 175 55 270 C 240 28 178 D 550 64 257 E 885 29 126 F 990 58 208 | SECTION DISTANCE ¹ WIDTH AREA VELOCITY (FEET) (SQ.FEET) (FEET/SEC.) EY CREEK A 100 27 197 5.7 B 175 55 270 4.2 C 240 28 178 6.3 D 550 64 257 4.4 E 885 29 126 9.0 F 990 58 208 5.4 | SECTION DISTANCE ¹ WIDTH AREA VELOCITY (FEET NAVD) EY CREEK A 100 27 197 5.7 926.6 B 175 55 270 4.2 926.6 C 240 28 178 6.3 926.6 D 550 64 257 4.4 926.6 E 885 29 126 9.0 926.6 F 990 58 208 5.4 926.6 | SECTION DISTANCE ¹ WIDTH SECTION AREA VELOCITY FLOODWAY FLOODWAY | SECTION DISTANCE WIDTH SECTION AREA VELOCITY (FEET NAVD) (FEET NAVD) (FEET NAVD) (FEET NAVD) (FEET NAVD) | ¹Feet Above Mouth KING COUNTY, WA AND INCORPORATED AREAS FEDERAL EMERGENCY MANAGEMENT AGENCY **FLOODWAY DATA** **MALONEY CREEK** ²Elevation Computed Without Consideration of Backwater Effects From South Fork Skykomish River | FLOODING SO | DURCE | FLOODWAY | | | 1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION | | | | |-------------------------------|--|----------------------------------
---------------------------------|--|---|---|---|--| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY ² | WITH FLOODWAY ² | INCREASE | | MAY CREEK TRIBUTARY A B C D F | 700
1,100
1,600
1,950
2,420
2,760 | 61
78
69
45
51
13 | (SQ.FEET) 127 198 151 92 96 22 | 1.1
0.7
0.3
0.5
0.5
2.1 | 333.1
333.1
333.1
333.1
333.1
333.1 | 331.6
331.7
331.8
331.9
332.1 | 332.6
332.7
332.8
332.9
333.0 | 1.0
1.0
1.0
1.0
1.0
0.9 | ¹Feet Above Mouth FEDERAL EMERGENCY MANAGEMENT AGENCY KING COUNTY, WA AND INCORPORATED AREAS **FLOODWAY DATA** **MAY CREEK TRIBUTARY** ²Elevations Computed Without Consideration of Backwater from May Creek | FLOODING SO | OURCE | | FLOODWAY | | 1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION | | | | |---------------|-----------------------|--------|-----------------|------------------|---|---------------------|------------------|----------| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | MAY CREEK | | | | | | | | | | А | 0.14 | 34 | 158 | 5.5 | 24.6 | 24.6 | 25.1 | 0.5 | | В | 0.16 | 60 | 239 | 3.6 | 25.4 | 25.4 | 25.8 | 0.4 | | С | 0.24 | 42 | 99 | 8.8 | 26.9 | 26.9 | 26.9 | 0.0 | | D | 0.25 | 42 | 110 | 7.9 | 29.3 | 29.3 | 29.3 | 0.0 | | Е | 0.31 | 31 | 121 | 7.2 | 32.6 | 32.6 | 32.8 | 0.2 | | F | 0.39 | 40 | 150 | 5.8 | 36.1 | 36.1 | 36.6 | 0.5 | | G | 0.46 | 28 | 87 | 10.0 | 39.4 | 39.4 | 39.4 | 0.0 | | Н | 0.52 | 23 | 123 | 7.1 | 43.6 | 43.6 | 44.2 | 0.6 | | I | 0.57 | 45 | 165 | 5.3 | 45.4 | 45.4 | 46.1 | 0.7 | | J | 0.63 | 31 | 89 | 9.7 | 48.9 | 48.9 | 48.9 | 0.0 | | K | 0.78 | 33 | 133 | 6.5 | 58.8 | 58.8 | 58.8 | 0.0 | | L | 0.94 | 79 | 143 | 6.1 | 68.3 | 68.3 | 68.3 | 0.0 | | M | 1.09 | 33 | 113 | 7.7 | 80.0 | 80.0 | 80.2 | 0.2 | | N | 1.25 | 39 | 128 | 6.6 | 89.0 | 89.0 | 89.0 | 0.0 | | 0 | 1.36 | 32 | 89 | 9.6 | 96.7 | 96.7 | 96.8 | 0.1 | | Р | 1.39 | 40 | 172 | 4.9 | 99.2 | 99.2 | 99.6 | 0.4 | | Q | 1.41 | 33 | 90 | 9.5 | 99.4 | 99.4 | 99.4 | 0.0 | | R | 1.42 | 33 | 111 | 7.7 | 100.0 | 100.0 | 100.0 | 0.0 | | S | 1.46 | 30 | 95 | 8.9 | 103.4 | 103.4 | 103.5 | 0.1 | | Т | 1.54 | 22 | 91 | 9.3 | 110.4 | 110.4 | 110.5 | 0.1 | | U | 1.56 | 8 | 68 | 12.5 | 115.8 | 115.8 | 115.8 | 0.0 | | V | 1.61 | 43 | 283 | 2.9 | 117.8 | 117.8 | 118.7 | 0.9 | | W | 1.74 | 27 | 81 | 9.9 | 124.5 | 124.5 | 124.5 | 0.0 | | X | 1.83 | 38 | 170 | 4.8 | 128.6 | 128.6 | 129.3 | 0.7 | | Υ | 1.96 | 52 | 101 | 8.0 | 139.4 | 139.4 | 139.4 | 0.0 | | Z | 2.02 | 42 | 130 | 6.3 | 144.0 | 144.0 | 144.1 | 0.1 | | | | | | | | | | | ¹Miles Above Mouth | FLOODING S | OURCE | | FLOODWAY | | 1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION | | | | |---------------|-----------------------|--------|-----------------|------------------|---|---------------------|------------------|----------| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | MAY CREEK | | | | | | | | | | AA | 3.23 | 37 | 124 | 5.1 | 270.0 | 270.0 | 270.9 | 0.9 | | AB | 3.34 | 33 | 78 | 8.2 | 281.9 | 281.9 | 281.9 | 0.0 | | AC | 3.49 | 41 | 135 | 4.7 | 293.2 | 293.2 | 293.8 | 0.6 | | AD | 3.68 | 40 | 134 | 4.8 | 303.9 | 303.9 | 303.9 | 0.0 | | AE | 3.74 | 15 | 78 | 8.2 | 307.9 | 307.9 | 308.1 | 0.2 | | AF | 3.80 | 21 | 80 | 8.0 | 310.1 | 310.1 | 310.5 | 0.4 | | AG | 3.90 | 18 | 105 | 5.3 | 312.8 | 312.8 | 313.6 | 0.8 | | AH | 3.99 | 53 | 257 | 2.2 | 313.6 | 313.6 | 314.3 | 0.7 | | Al | 4.07 | 19 | 92 | 5.5 | 313.8 | 313.8 | 314.7 | 0.9 | | AJ | 4.13 | 92 | 371 | 1.4 | 315.1 | 315.1 | 315.7 | 0.6 | | AK | 4.22 | 75 | 303 | 1.7 | 315.1 | 315.1 | 315.9 | 0.8 | | AL | 4.37 | 231 | 983 | 0.5 | 315.4 | 315.4 | 316.4 | 1.0 | | AM | 4.48 | 96 | 387 | 1.3 | 315.5 | 315.5 | 316.5 | 1.0 | | AN | 4.58 | 137 | 540 | 0.9 | 315.7 | 315.7 | 316.7 | 1.0 | | AO | 4.68 | 19 | 78 | 6.5 | 316.1 | 316.1 | 316.7 | 0.6 | | AP | 4.90 | 133 | 559 | 0.9 | 317.0 | 317.0 | 318.0 | 1.0 | | AQ | 5.12 | 115 | 325 | 1.6 | 317.4 | 317.4 | 318.4 | 1.0 | | AR | 5.30 | 44 | 120 | 4.2 | 319.1 | 319.1 | 319.6 | 0.5 | | AS | 5.47 | 12 | 57 | 6.5 | 322.8 | 322.8 | 322.8 | 0.0 | | AT | 5.56 | 73 | 413 | 0.9 | 323.9 | 323.9 | 324.7 | 0.8 | | AU | 5.72 | 85 | 444 | 0.8 | 323.9 | 323.9 | 324.8 | 0.9 | | AV | 5.86 | 184 | 743 | 0.5 | 324.0 | 324.0 | 325.0 | 1.0 | | AW | 6.00 | 216 | 491 | 0.8 | 324.0 | 324.0 | 325.0 | 1.0 | | AX | 6.16 | 50 | 70 | 5.3 | 325.5 | 325.5 | 325.8 | 0.3 | | AY | 6.29 | 100 | 271 | 1.4 | 326.8 | 326.8 | 327.8 | 1.0 | | AZ | 6.44 | 170 | 324 | 1.1 | 327.6 | 327.6 | 328.4 | 0.8 | ¹Miles Above Mouth | FLOODING SO | OURCE | | FLOODWAY | | 1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION | | | | |--|--|---|---|---|---|---|---|---| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | MAY CREEK | | | | | | | | | | BA
BB
BC
BD
BE
BF
BG | 6.56
6.65
6.70
6.78
6.93
7.10
7.24 | 13
138
11
34
61
33
11 | 40
106
26
58
48
37
26 | 6.0
2.3
4.3
1.9
2.3
2.9
4.2 | 327.9
333.1
334.4
335.6
337.7
341.7
345.5 | 327.9
333.1
334.4
335.6
337.7
341.7
345.5 | 328.9
333.1
335.0
336.4
338.7
342.4
346.3 | 1.0
0.0
0.6
0.8
1.0
0.7
0.8 | ¹Miles Above Mouth | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | |-------------------------------------|---------------| | KING COUNTY, WA | MAY ODEFY | | AND INCORPORATED AREAS | MAY CREEK | | FLOODING SO | URCE | | FLOODWAY | | 1-PERCENT-ANNUAL-CHANCE FLOOD
WATER-SURFACE ELEVATION | | | | | |---------------------------------|-----------------------|--------------|-------------------------------------|--|--|-----------------------------|----------------------------|--------------------|--| | CROSS SECTION | DISTANCE ¹ | WIDTH (FEET) | SECTION
AREA
(SQUARE
FEET) | MEAN
VELOCITY
(FEET PER
SECOND) | REGULATORY
(FEET NAVD) | WITHOUT
FLOODWAY
FEET | WITH
FLOODWAY
(NAVD) | INCREASE
(FEET) | | | MIDDLE FORK
SNOQUALMIE RIVER | | | | | | | | | | | A-AG ²
AH | 43.22 | 450 | 7,992 | 4.8 | 428.5 | 428.5 | 429.5 | 1.0 | | | Al | 43.69 | 2,162 | 29,756 | 1.3 | 429.6 | 429.6 | 430.6 | 1.0 | | | AJ | 44.05 | 2,900 | 27,113 | 1.4 | 429.8 | 429.8 | 430.8 | 1.0 | | | AK | 44.27 | 3,171 | 16,806 | 2.3 | 429.9 | 429.9 | 430.8 | 0.9 | | | AL | 44.51 | 3,205 | 19,507 | 2.0 | 430.7 | 430.7 | 431.7 | 1.0 | | | AM | 44.69 | 2,970 | 15,882 | 2.3 | 431.7 | 431.7 | 432.4 | 0.7 | | | AN | 44.95 | 924 | 5,066 | 7.3 | 438.0 | 438.0 | 438.8 | 0.8 | | | AO | 45.16 | 649 | 5,173 | 7.2 | 442.5 | 442.5 | 442.8 | 0.3 | | | AP | 45.40 | 803 | 6,072 | 6.1 | 446.5 | 446.5 | 447.2 | 0.7 | | | AQ | 45.66 | 457 | 3,697 | 10.1 | 453.3 | 453.3 | 453.4 | 0.1 | | | AR | 45.90 | 361 | 3,461 | 11.4 | 458.7 | 458.7 | 459.0 | 0.3 | | | AS | 46.12 | 984 | 7,132 | 5.5 | 464.6 | 464.6 | 465.0 | 0.4 | | | AT | 46.36 | 610 | 3,432 | 12.8 | 470.7 | 470.7 | 470.7 | 0.0 | | | AU | 46.64 | 600 | 3,716 | 11.8 | 481.4 | 481.4 | 481.4 | 0.0 | | | AV | 47.76 | 648 | 1,608 | 9.5 | 484.8 | 484.8 | 485.7 | 0.9 | | | AW | 47.80 | 442 | 3,997 | 11.0 | 485.9 | 485.9 | 486.9 | 1.0 | | | AX | 47.93 | 491 | 5,319 | 8.2 | 490.1 | 490.1 | 491.1 | 1.0 | | | AY | 48.04 | 281 | 3,216 | 13.6 | 492.6 | 492.6 | 493.3 | 0.7 | | | AZ | 48.15 | 411 | 4,792 | 9.1 | 497.5 | 497.5 | 498.4 | 0.9 | | | BA | 48.31 | 378 | 3,903 | 11.2 | 501.8 | 501.8 | 502.1 | 0.3 | | | ВВ | 48.45 | 732 | 5,608 | 7.8 | 506.9 | 506.9 | 507.3 | 0.4 | | | BC | 48.58 | 794 | 5,883 | 7.4 | 510.1 | 510.1 | 510.4 | 0.3 | | | BD | 48.71 | 507 | 4,052 | 10.8 | 513.9 | 513.9 | 514.0 | 0.1 | | | BE | 48.83 | 637 | 4,813 | 9.1 | 518.9 | 518.9 | 519.0 | 0.1 | | Stream distance in miles above mouth FEDERAL EMERGENCY MANAGEMENT AGENCY KING COUNTY, WA AND INCORPORATED AREAS **FLOODWAY DATA** MIDDLE FORK SNOQUALMIE RIVER ² Cross sections A-AG reserved for Snoqualmie River | FLOODING SO | URCE | | FLOODWAY | | BASE FLOOD
WATER-SURFACE ELEVATION | | | | | |------------------|-----------------------|--------------|-------------------------------------|--|---------------------------------------|---------------------|------------------|--------------------|--| | CROSS SECTION | DISTANCE ¹ | WIDTH (FEET) | SECTION
AREA
(SQUARE
FEET) | MEAN
VELOCITY
(FEET PER
SECOND) | REGULATORY
(FEET NAVD) | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE
(FEET) | | | MIDDLE FORK | | | | | | | | | | | SNOQUALMIE RIVER | | | | | | | | | | | BF | 48.95 | 676 | 5,576 | 7.9 | 522.3 |
522.3 | 522.9 | 0.6 | | | BG | 49.07 | 725 | 5,030 | 8.7 | 525.1 | 525.1 | 526.0 | 0.9 | | | BH | 49.18 | 234 | 2,781 | 15.8 | 528.5 | 528.5 | 529.4 | 0.9 | | | BI | 49.31 | 274 | 3,655 | 12.0 | 535.8 | 535.8 | 536.1 | 0.3 | | | BJ | 49.44 | 295 | 3,720 | 11.6 | 539.7 | 539.7 | 539.9 | 0.2 | | | BK | 49.56 | 350 | 3,140 | 13.9 | 544.5 | 544.5 | 544.5 | 0.0 | | | BL | 49.65 | 225 | 2,638 | 16.6 | 549.9 | 549.9 | 549.9 | 0.0 | | | BM | 49.77 | 238 | 3,257 | 13.4 | 556.6 | 556.6 | 556.7 | 0.1 | | | BN | 49.87 | 278 | 3,592 | 12.2 | 559.8 | 559.8 | 560.2 | 0.4 | | | ВО | 50.00 | 316 | 2,850 | 15.4 | 566.3 | 566.3 | 566.5 | 0.2 | | | BP | 50.12 | 251 | 3,612 | 12.1 | 571.8 | 571.8 | 572.7 | 0.9 | | | BQ | 20.26 | 216 | 3,171 | 13.8 | 575.7 | 575.7 | 576.3 | 0.6 | | | BR | 50.38 | 175 | 2,938 | 14.9 | 579.7 | 579.7 | 579.9 | 0.2 | | | BS | 50.62 | 351 | 3,508 | 12.5 | 589.2 | 589.2 | 590.1 | 0.9 | | | BT | 50.80 | 321 | 2,732 | 16.0 | 599.9 | 599.9 | 599.9 | 0.0 | | | BU | 51.03 | 202 | 2,790 | 15.7 | 614.5 | 614.5 | 614.6 | 0.1 | | | BV | 51.32 | 194 | 2,255 | 19.4 | 632.4 | 632.4 | 632.4 | 0.0 | | | | | | | | | | | | | Stream distance in miles above mouth FEDERAL EMERGENCY MANAGEMENT AGENCY KING COUNTY, WA AND INCORPORATED AREAS **FLOODWAY DATA** MIDDLE FORK SNOQUALMIE RIVER | CROSS SECTION DISTANCE ¹ WIDTH (FEET) SECTION AREA (SQ.FEET) (FEET/SEC.) REGULATORY (FEET NAVD) MIDDLE OVERFLOW A 1,000 87 372 2.4 434.7 434.7 8 1.575 135 273 2.9 436.3 436.3 436.3 C 1,975 129 215 4.0 437.5 437.5 D 2,924 206 743 1.2 440.4 440.4 E 3,675 292 298 3.0 443.1 443.1 F 4,125 100 294 3.1 444.7 | | | |---|--|--| | MIDDLE OVERFLOW A 1,000 87 372 2.4 434.7 434.7 B 1,575 135 273 2.9 436.3 436.3 C 1,975 129 215 4.0 437.5 437.5 D 2,924 206 743 1.2 440.4 440.4 E 3,675 292 298 3.0 443.1 443.1 | WITH
FLOODWAY | INCREASE | | A 1,000 87 372 2.4 434.7 434.7 B 1,575 135 273 2.9 436.3 436.3 C 1,975 129 215 4.0 437.5 437.5 D 2,924 206 743 1.2 440.4 440.4 E 3,675 292 298 3.0 443.1 443.1 | (FEET NAVD) | (FEET) | | B 1,575 135 273 2.9 436.3 436.3 C 1,975 129 215 4.0 437.5 D 2,924 206 743 1.2 440.4 440.4 E 3,675 292 298 3.0 443.1 | | | | | 435.1
436.3
437.5
440.8
443.1
444.8 | 0.4
0.0
0.0
0.4
0.0
0.1 | ¹Feet Above Convergence with South Fork Snoqualmie River | TAB | FEDERAL EMERGENCY MANAGEMENT AGENCY KING COUNTY. WA | FLOODWAY DATA | |------|--|-----------------| | LE 6 | AND INCORPORATED AREAS | MIDDLE OVERFLOW | | | | FLOODWAY | | | 1-PERCENT-ANNUAL-CHANCE FLOOD
WATER SURFACE ELEVATION | | | | |---------------------|-----------------------|--------------|------------------------------|---------------------------|--|---|---------------------------------|--------------------| | CROSS SECTION | DISTANCE ¹ | WIDTH (FEET) | SECTION
AREA
(SQ.FEET) | MEAN VELOCITY (FEET/SEC.) | REGULATORY (FEET NAVD) | WITHOUT
FLOODWAY ³
(FEET NAVD) | WITH
FLOODWAY
(FEET NAVD) | INCREASE
(FEET) | | MILL CREEK - AUBURN | | , | (| (| , | , | , | , | | А | 240 | 2 | 2 | 2 | 45.4 | 33.5 | 2 | 2 | | В | 960 | 2 | 2 | 2 | 45.4
45.4 | 33.8 | ² | 2 | | C | 1,490 | 2 | 2 | 2 | 45.4
45.4 | 36.4 | ² | 2 | | D | 1,518 | 2 | 2 | 2 | 45.4
45.4 | 36.5 | ² | 2 | | E | 1,720 | 2 | 2 | 2 | 45.4 | 37.7 | ² | 2 | | F | 2,140 | 2 | 2 | 2 | 45.4 | 38.4 | 2 | 2 | | G | 2,305 | 2 | 2 | 2 | 45.4 | 38.5 | 2 | 2 | | н | 2,460 | 2 | 2 | 2 | 45.4 | 38.9 | 2 | 2 | | i | 3,140 | 2 | 2 | 2 | 45.4 | 39.4 | 2 | 2 | | J | 4,060 | 2 | 2 | 2 | 45.4 | 40.1 | ² | 2 | | K | 4,770 | 2 | 2 | 2 | 45.4 | 41.3 | 2 | 2 | | L | 5,450 | 2 | 2 | 2 | 45.4 | 41.8 | 2 | 2 | | М | 5,630 | 2 | 2 | 2 | 45.4 | 41.9 | 2 | 2 | | N | 5,810 | 2 | 2 | 2 | 45.4 | 42.5 | 2 | 2 | | 0 | 6,600 | 2 | 2 | 2 | 45.4 | 42.8 | 2 | 2 | | Р | 7,460 | 2 | 2 | 2 | 45.4 | 42.8 | 2 | 2 | | Q | 7,860 | 2 | 2 | 2 | 45.4 | 43.5 | ² | 2 | | R | 7,990 | 2 | 2 | 2 | 45.4 | 43.6 | 2 | 2 | | S | 8,500 | 2 | 2 | 2 | 45.4 | 43.8 | 2 | 2 | | Т | 8,750 | 2 | 2 | 2 | 45.4 | 43.9 | ² | 2 | | U | 8,960 | 2 | 2 | 2 | 45.4 | 44.3 | ² | 2 | | V | 9,420 | 2 | 2 | 2 | 45.4 | 44.6 | 2 | 2 | | W | 9,840 | 2 | ² | 2 | 45.4 | 44.6 | ² | 2 | | X | 10,340 | 2 | 2 | 2 | 45.4 | 44.6 | ² | 2 | | Υ | 10,580 | 2 | 2 | 2 | 45.4 | 44.6 | ² | 2 | | Z | 10,760 | 2 | 2 | 2 | 45.4 | 44.8 | ² | 2 | ¹Feet Above Mouth FEDERAL EMERGENCY MANAGEMENT AGENCY KING COUNTY, WA AND INCORPORATED AREAS **FLOODWAY DATA** **MILL CREEK - AUBURN** ²Storage Floodway ³Elevation Computed Without Consideration of Backwater From Green River | FLOODING SO | OURCE | | FLOODWAY | | 1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION | | | | |---------------------|-----------------------|--------|-----------------|------------------|---|---------------------|------------------|----------| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | MILL CREEK - AUBURN | | | | | | | | | | AA | 10,090 | 2 | 2 | 2 | 45.4 | 44.8 ³ | 2 | 2 | | AB | 11,070 | 2 | 2 | 2 | 45.4 | 45.2 ³ | 2 | 2 | | AC | 11,580 | 2 | 2 | 2 | 45.4 | 45.3 ³ | 2 | 2 | | AD | 12,210 | 52 | 267 | 1.8 | 45.8 | 45.8 | 46.1 | 0.3 | | AE | 12,860 | 70 | 341 | 1.4 | 45.9 | 45.9 | 46.2 | 0.3 | | AF | 13,590 | 35 | 165 | 2.9 | 46.1 | 46.1 | 46.5 | 0.4 | | AG | 14,420 | 44 | 125 | 3.8 | 46.6 | 46.6 | 47.3 | 0.7 | | AH | 14,766 | 17 | 71 | 5.6 | 47.6 | 47.6 | 48.1 | 0.5 | | AI | 15,160 | 32 | 190 | 2.1 | 49.5 | 49.5 | 50.1 | 0.6 | | AJ | 15,850 | 51 | 219 | 1.8 | 49.7 | 49.7 | 50.4 | 0.7 | | AK | 17,050 | 44 | 168 | 2.4 | 50.2 | 50.2 | 50.8 | 0.6 | | AL | 17,940 | 34 | 142 | 2.8 | 50.8 | 50.8 | 51.4 | 0.6 | | AM | 18,190 | 15 | 83 | 4.3 | 51.0 | 51.0 | 51.6 | 0.6 | | AN | 18,360 | 103 | 241 | 1.5 | 51.4 | 51.4 | 51.9 | 0.5 | | AO | 19,220 | 98 | 195 | 1.8 | 52.0 | 52.0 | 52.6 | 0.6 | | AP | 20,120 | 110 | 139 | 2.6 | 52.8 | 52.8 | 53.3 | 0.5 | | AQ | 20,960 | 13 | 181 | 4.9 | 53.8 | 53.8 | 54.3 | 0.5 | | AR | 21,210 | 260 | 67 | 0.6 | 53.9 | 53.9 | 54.4 | 0.5 | | AS | 21,630 | 310 | 573 | 1.1 | 54.9 | 54.9 | 55.9 | 1.0 | | AT | 22,070 | 310 | 312 | 0.7 | 55.7 | 55.7 | 56.1 | 0.4 | | AU | 22,680 | 300 | 497 | 1.0 | 56.3 | 56.3 | 56.7 | 0.4 | | AV | 23,150 | 220 | 325 | 6.9 | 56.5 | 56.5 | 57.0 | 0.5 | | AW | 23,370 | 230 | 48 | 0.3 | 56.8 | 56.8 | 57.1 | 0.3 | | AX | 23,760 | 209 | 1,127 | 0.4 | 59.9 | 59.9 | 60.9 | 1.0 | | AY | 24,590 | 197 | 933 | 0.4 | 60.0 | 60.0 | 61.0 | 1.0 | | AZ | 25,450 | 250 | 395 | 0.9 | 60.1 | 60.1 | 61.1 | 1.0 | | | | | | | | | | | ¹Feet Above Mouth KING COUNTY, WA AND INCORPORATED AREAS FEDERAL EMERGENCY MANAGEMENT AGENCY | | _ | \sim | $\overline{}$ | | | | $\overline{}$ | | | |-----|------------|--------|---------------|---|----|---|---------------|---|----| | - 1 | <i>(</i>) | 11 | | N | Λ, | • | | Λ | ΓΔ | | | | | | | | | | | | **MILL CREEK - AUBURN** ²Storage Floodway ³Elevation Computed Without Consideration of Backwater From Green River | FLOODING SO | DURCE | | FLOODWAY | | 1- | | AL-CHANCE FLOO
CE ELEVATION | OD | |---------------------|-----------------------|--------|-----------------|------------------|-------------|---------------------|--------------------------------|----------| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | MILL CREEK - AUBURN | | | | | | | | | | BA | 25,680 | 215 | 251 | 1.5 | 60.4 | 60.4 | 61.1 | 0.7 | | BB | 26,430 | 219 | 194 | 1.6 | 61.5 | 61.5 | 61.8 | 0.3 | | BC | 27,250 | 145 | 221 | 1.4 | 62.2 | 62.2 | 62.6 | 0.4 | | BD | 28,200 | 43 | 77 | 4.1 | 63.5 | 63.5 | 64.2 | 0.7 | | BE | 29,000 | 40 | 114 | 2.8 | 65.2 | 65.2 | 65.6 | 0.4 | | BF | 29,240 | 42 | 222 | 1.4 | 65.3 | 65.3 | 65.8 | 0.5 | | BG | 29,512 | 65 | 223 | 1.4 | 65.3 | 65.3 | 65.8 | 0.5 | | ВН | 29,650 | 58 | 94 | 3.3 | 65.2 | 65.2 | 65.7 | 0.5 | | BI | 30,480 | 56 | 95 | 3.3 | 65.8 | 65.8 | 66.2 | 0.4 | | BJ | 31,310 | 42 | 109 | 2.9 | 66.2 | 66.2 | 66.5 | 0.3 | | ВК | 31,620 | 59 | 37 | 8.3 | 66.4 | 66.4 | 66.4 | 0.0 | | BL | 31,747 | 48 | 30 | 10.4 | 67.2 | 67.2 | 67.2 | 0.0 | | BM | 32,430 | 125 | 293 | 1.1 | 70.9 | 70.9 | 71.6 | 0.7 | | BN | 32,880 | 575 | 935 | 0.1 | 72.7 | 72.7 | 73.5 | 0.8 | | ВО | 33,760 | 946 | 747 | 0.2 | 72.7 | 72.7 | 73.5 | 8.0 | | BP | 34,470 | 562 | 436 | 0.3 | 72.8 | 72.8 | 73.6 | 8.0 | | BQ | 34,925 | 724 | 519 | 0.1 | 72.8 | 72.8 | 73.6 | 8.0 | | BR | 35,230 | 365 | 386 | 0.1 | 72.9 | 72.9 | 73.7 | 0.8 | | BS | 35,850 | 565 | 480 | 0.1 | 72.9 | 72.9 | 73.7 | 0.8 | ¹Feet Above Mouth | | FLOODING SOURCE | | | | 1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION | | | | |-------------------|-----------------------|--------|-----------------|------------------|---|----------------------|----------------------|----------| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY ² | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) |
(FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | MILL CREEK - KENT | | | | | | | | | | Α | 0.109 | 63 | 474 | 1.4 | 28.0 | 2 | 2 | 2 | | В | 0.138 | 60 | 322 | 2.0 | n/a | 2 | 2 | 2 | | С | 0.737 | 49 | 331 | 2.0 | 30.0 | 2 | 2 | 2 | | D | 0.788 | 50 | 323 | 2.0 | n/a | 2 | 2 | 2 | | E | 1.083 | 56 | 405 | 1.6 | n/a | 2 | 2 | 2 | | F | 1.410 | 57 | 328 | 2.0 | n/a | 2 | 2 | 2 | | G | 1.476 | 41 | 300 | 2.2 | n/a | 2 | 2 | 2 | | Н | 1.660 | 40 | 276 | 2.4 | n/a | 2 | 2 | 2 | | 1 | 1.767 | 50 | 349 | 1.9 | n/a | 2 | 2 | 2 | | J | 1.803 | 38 | 325 | 1.6 | n/a | ² | 2 | 2 | | K | 1.992 | 37 | 277 | 1.9 | n/a | 2 | 2 | 2 | | L | 2.203 | 43 | 346 | 0.8 | n/a | 2 | ² | 2 | | M | 2.294 | 42 | 311 | 0.9 | n/a | 2 | 2 | 2 | | N | 2.357 | 32 | 254 | 1.1 | n/a | 2 | 2 | 2 | | 0 | 2.545 | 41 | 210 | 1.3 | n/a | 2 | 2 | 2 | | Р | 2.612 | 38 | 270 | 1.0 | n/a | 2 | 2 | 2 | | Q | 2.679 | 22 | 137 | 2.0 | n/a | 2 | 2 | 2 | | R | 2.922 | 50 | 232 | 1.2 | n/a | 2 | 2 | 2 | | S | 2.953 | 34 | 185 | 1.5 | n/a | 2 | 2 | 2 | | T | 3.048 | 45 | 248 | 1.1 | n/a | 2 | 2 | 2 | | U | 3.188 | 37 | 238 | 1.2 | 31.0 | 2 | 2 | 2 | | V | 3.230 | 29 | 222 | 1.2 | n/a | ² | 2 | 2 | | W | 3.683 | 29 | 107 | 1.2 | 32.0 | 2 | ² | 2 | | Χ | 3.910 | 56 | 116 | 1.1 | 35.0 | 2 | 2 | 2 | | Υ | 3.943 | 47 | 78 | 1.7 | 36.0 | ² | 2 | 2 | | Z | 4.066 | 30 | 97 | 1.3 | n/a | 2 | 2 | 2 | ¹Miles Above Mouth ² Mill Creek flood elevations are controlled by Green River Flood. Base Flood Elevation are derived from 1% chance flood elevations from Green River | FLOODING SO | OURCE | | FLOODWAY | | 1-1 | PERCENT-ANNU/
WATER SURFA | AL-CHANCE FLOO
ICE ELEVATION | OD | |-------------------|-----------------------|-----------------|------------------------------|---------------------------|-------------------------------------|------------------------------------|---------------------------------|--------------------| | CROSS SECTION | DISTANCE ¹ | WIDTH
(FEET) | SECTION
AREA
(SQ.FEET) | MEAN VELOCITY (FEET/SEC.) | REGULATORY ³ (FEET NAVD) | WITHOUT
FLOODWAY
(FEET NAVD) | WITH FLOODWAY (FEET NAVD) | INCREASI
(FEET) | | | | (FEE1) | (SQ.FEET) | (FEE 1/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (ГССІ) | | MILL CREEK - KENT | | | | | | | | | | AA | 4.175 ² | 27 | 99 | 1.3 | 38.0 | 2 | 2 | 2 | | AB | 22,218 | 16 | 82 | 1.6 | 38.0 | ² | ² | 2 | | AC | 22,258 | 12 | 47 | 2.8 | n/a | 2 | 2 | 2 | | AD | 22,558 | 12 | 82 | 1.6 | n/a | 2 | 2 | 2 | | AE | 22,668 | 19 | 95 | 1.4 | n/a | 2 | 2 | 2 | | AF | 22,828 | 27 | 85 | 1.5 | n/a | 2 | 2 | 2 | | AG | 23,147 | 9 | 53 | 2.3 | 40.0 | ² | 2 | 2 | | AH | 23,377 | 24 | 105 | 1.1 | n/a | 2 | ² | 2 | | Al | 23,547 | 25 | 77 | 1.5 | n/a | ² | 2 | 2 | | AJ | 23,620 | 8 | 49 | 2.4 | n/a | 2 | ² | 2 | | AK | 23,640 | 21 | 100 | 1.2 | n/a | 2 | 2 | 2 | | AL | 23,740 | 18 | 99 | 1.2 | n/a | 2 | ² | 2 | | AM | 24,055 | 22 | 117 | 1.0 | n/a | 2 | 2 | 2 | | AN | 24,230 | 12 | 80 | 1.5 | n/a | 2 | 2 | 2 | | AO | 24,275 | 31 | 163 | 0.7 | n/a | 2 | 2 | 2 | | AP | 24,675 | 27 | 129 | 0.9 | n/a | 2 | 2 | 2 | | AQ | 24,995 | 22 | 120 | 1.0 | n/a | 2 | ² | 2 | | AR | 25,555 | 26 | 126 | 0.8 | n/a | ² | 2 | 2 | | AS | 25,995 | 24 | 106 | 1.5 | 41.0 | 2 | ² | 2 | | AT | 26,395 | 23 | 137 | 1.0 | n/a | ² | ² | 2 | | AU | 26,497 | 25 | 120 | 1.2 | n/a | ² | ² | 2 | | AV | 26,897 | 19 | 82 | 1.7 | n/a | ² | ² | 2 | | AW | 27,257 | 39 | 65 | 2.1 | n/a | ² | 2 | 2 | | AX | 27,537 | 12 | 51 | 2.7 | 42.0 | ² | ² | 2 | | AY | 28,312 | 11 | 40 | 3.5 | 44.0 | ² | ² | 2 | | AZ | 28,382 | 11 | 44 | 3.2 | 45.0 | ² | ² | 2 | ¹Feet Above Mouth ²Miles Above Mouth ³ Mill Creek flood elevations are controlled by Green River Flood. Base Flood Elevation are derived from 1% chance flood elevations from Green River | FLOODING SO | OURCE | | FLOODWAY | | 1- | | AL-CHANCE FLO | OD | |---------------|-----------------------|------------------|-----------------|------------------|-------------|---------------------|-------------------|----------| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | MILLER CREEK | | | | | | | | | | А | 40 | 31 | 140 | 4.8 | 12.5 | 9.9 ³ | 9.9 ³ | 0.0 | | В | 518 | 171 ² | 361 | 1.9 | 12.5 | 11.9 ³ | 12.0 ³ | 0.1 | | С | 973 | 211 | 301 | 2.2 | 12.6 | 12.6 | 13.6 | 1.0 | | D | 1,586 | 15 | 59 | 8.1 | 19.2 | 19.2 | 19.2 | 0.0 | | E | 1,916 | 17 | 82 | 5.8 | 21.2 | 21.2 | 22.1 | 0.9 | | F | 3,016 | 23 | 59 | 8.1 | 34.2 | 34.2 | 34.3 | 0.1 | | G | 3,391 | 17 | 62 | 7.8 | 39.8 | 39.8 | 39.8 | 0.0 | | Н | 3,867 | 54 | 54 | 8.9 | 46.8 | 46.8 | 46.8 | 0.0 | | I | 4,109 | 24 | 76 | 5.6 | 49.7 | 49.7 | 49.7 | 0.0 | | J | 4,579 | 25 | 60 | 7.2 | 59.9 | 59.9 | 59.9 | 0.0 | | K | 6,494 | 24 | 67 | 6.4 | 105.2 | 105.2 | 105.2 | 0.0 | | L | 8,984 | 22 | 57 | 5.2 | 161.6 | 161.6 | 161.6 | 0.0 | | M | 9,428 | 12 | 58 | 5.1 | 172.9 | 172.9 | 173.9 | 1.0 | | N | 10,248 | 19 | 70 | 3.9 | 191.9 | 191.9 | 192.1 | 0.2 | | 0 | 10,603 | 37 | 136 | 2.0 | 195.6 | 195.6 | 195.7 | 0.1 | | Р | 11,028 | 17 | 67 | 4.1 | 196.3 | 196.3 | 196.4 | 0.1 | | Q | 11,869 | 22 | 72 | 7.4 | 201.1 | 201.1 | 201.1 | 0.0 | | R | 12,572 | 14 | 61 | 4.5 | 207.5 | 207.5 | 207.5 | 0.0 | | S | 12,759 | 76 | 111 | 2.5 | 210.1 | 210.1 | 210.2 | 0.1 | | Т | 13,314 | 13 | 78 | 2.7 | 215.6 | 215.6 | 216.0 | 0.4 | | U | 13,434 | 12 | 69 | 3.1 | 216.3 | 216.3 | 216.5 | 0.2 | | V | 13,960 | 16 | 32 | 6.6 | 218.0 | 218.0 | 218.5 | 0.5 | | W | 14,861 | 19 | 48 | 4.4 | 227.2 | 227.2 | 227.9 | 0.7 | | X | 15,461 | 18 | 47 | 4.5 | 233.3 | 233.3 | 233.5 | 0.2 | | Υ | 16,006 | 11 | 37 | 5.8 | 239.4 | 239.4 | 240.0 | 0.6 | | Z | 16,202 | 42 | 169 | 1.2 | 250.9 | 250.9 | 250.9 | 0.0 | | | | | | | | | | | ¹Feet Above Puget Sound FEDERAL EMERGENCY MANAGEMENT AGENCY KING COUNTY, WA AND INCORPORATED AREAS **FLOODWAY DATA** **MILLER CREEK** ²Computed Without Consideration of Walker Creek Floodway ³Floodway Computed Without Consideration of Backwater From Puget Sound | FLOODING S | OURCE | | FLOODWAY | | 1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION | | | | | |---|--|-----------------------------|-----------------------------|-------------------------------|---|---|---|--------------------------|--| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | | MILLER CREEK | | | | | | | | | | | AA
AB
AC
AD
AE
AF ² | 16,837
17,415
17,801
18,062
18,982 | 13
28
20
13
335 | 43
70
78
59
973 | 4.9
3
2.7
3.6
0.2 | 254.0
264.3
267.5
268.7
268.9 | 254.0
264.3
267.5
268.7
268.9 | 254.0
264.3
267.8
269.2
269.9 | 0.0
0.3
0.5
1.0 | | ¹Feet Above Puget Sound ²Floodway not computed | 1 | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | |------|-------------------------------------|---------------| | Έ | KING COUNTY, WA | TEODWATDATA | | 1 11 | KING COUNTT, WA | MILLER CREEK | | 6 | AND INCORPORATED AREAS | MILLER CREEK | | CROSS SECTION DISTANCE¹ WIDTH (FEET) SECTION (SQ.FEET) MEAN VELOCITY (FEET NAVD) REGULATORY NORTH CREEK 412 3.9 26.0 | CROSS SECTION DISTANCE ¹ WIDTH (FEET) (SQ.FEET) (FEET/SEC.) (FEET NAVD) | WITH FLOODWAY (FEET NAVD) (FEET) 25.2 ² 0.0 25.4 ² 0.0 26.4 ² 0.1 27.0 ⁴ 0.4 27.3 ⁴ 0.5 27.7 ⁴ 0.7 27.8 ⁴ 0.8 28.2 ⁴ 0.9 | |--
--|---| | NORTH CREEK A 0 65 412 3.9 26.0 B 275 44 276 5.8 26.0 C 660 104 523 3.1 26.2/26.0/26.0³ D 1,160 213 816 2.0 26.5/26.1/26.7³ E 1,510 325 811 2.0 26.7/26.9/27.6³ F 2,020 328 862 1.9 26.9/27.7/28.4³ G 2,279 257 831 1.9 26.9/28.5/29.4³ H 2,939 378 1,148 1.4 27.3/29.5/30.0³ I 3,654 213 697 2.4 28.8/30.8/30.1³ J 4,117 137 490 2.9 33.7 K 4,502 254 468 3.1 34.2 L 4,977 46 256 5.6 34.9 M 5,332 88 344 4.2 36.1 N 5,552 76 343 4.2 36.9 O 6,070 109 459 3.1 38.6 | NORTH CREEK A 0 65 412 3.9 26.0 25.2² B 275 44 276 5.8 26.0 25.4² C 660 104 523 3.1 26.2/26.0/26.0³ 26.3² D 1,160 213 816 2.0 26.5/26.1/26.7³ 26.6⁴ E 1,510 325 811 2.0 26.7/26.9/27.6³ 26.8⁴ F 2,020 328 862 1.9 26.9/27.7/28.4³ 27.0⁴ G 2,279 257 831 1.9 26.9/27.7/28.4³ 27.0⁴ H 2,939 378 1,148 1.4 27.3/29.5/30.0³ 27.3⁴ H 2,939 378 1,148 1.4 27.3/29.5/30.0³ 27.3⁴ J 3,654 213 697 2.4 28.8/30.8/30.1³ 27.5⁴ J 4,117 137 490 2.9 33.7 33.7 K 4,502 254 468 3.1 34.2 34.2 L 4,977 46 256 5.6 34.9 34.9 M 5,332 88 344 4.2 36.1 36.1 N 5,552 76 343 4.2 36.9 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | A 0 65 412 3.9 26.0 B 275 44 276 5.8 26.0 C 660 104 523 3.1 26.2/26.0/26.0³ D 1,160 213 816 2.0 26.5/26.1/26.7³ E 1,510 325 811 2.0 26.7/26.9/27.6³ F 2,020 328 862 1.9 26.9/27.7/28.4³ G 2,279 257 831 1.9 26.9/28.5/29.4³ H 2,939 378 1,148 1.4 27.3/29.5/30.0³ I 3,654 213 697 2.4 28.8/30.8/30.1³ J 4,117 137 490 2.9 33.7 K 4,502 254 468 3.1 34.2 L 4,977 46 256 5.6 34.9 M 5,332 88 344 4.2 36.1 N 5,552 76 343 4.2 36.9 O 6,070 109 459 3.1 38.6 | A 0 65 412 3.9 26.0 25.2² B 275 44 276 5.8 26.0 25.4² C 660 104 523 3.1 26.2/26.0/26.0³ 26.3² D 1,160 213 816 2.0 26.5/26.1/26.7³ 26.6⁴ E 1,510 325 811 2.0 26.7/26.9/27.6³ 26.8⁴ F 2,020 328 862 1.9 26.9/27.7/28.4³ 27.0⁴ G 2,279 257 831 1.9 26.9/28.5/29.4³ 27.0⁴ H 2,939 378 1,148 1.4 27.3/29.5/30.0³ 27.3⁴ I 3,654 213 697 2.4 28.8/30.8/30.1³ 27.5⁴ J 4,117 137 490 2.9 33.7 33.7 K 4,502 254 468 3.1 34.2 34.2 L 4,977 46 256 5.6 34.9 34.9 M 5,332 88 344 4.2 36.1 36.1 N 5,552 76 343 4.2 36.9 | $\begin{array}{ccccc} 25.4^2 & & 0.0 \\ 26.4^2 & & 0.1 \\ 27.0^4 & & 0.4 \\ 27.3^4 & & 0.5 \\ 27.7^4 & & 0.7 \\ 27.8^4 & & 0.8 \end{array}$ | | B 275 | B 275 44 276 5.8 26.0 25.4² C 660 104 523 3.1 26.2/26.0/26.0³ 26.3² D 1,160 213 816 2.0 26.5/26.1/26.7³ 26.6⁴ E 1,510 325 811 2.0 26.7/26.9/27.6³ 26.8⁴ F 2,020 328 862 1.9 26.9/27.7/28.4³ 27.0⁴ G 2,279 257 831 1.9 26.9/28.5/29.4³ 27.0⁴ H 2,939 378 1,148 1.4 27.3/29.5/30.0³ 27.3⁴ I 3,654 213 697 2.4 28.8/30.8/30.1³ 27.5⁴ J 4,117 137 490 2.9 33.7 33.7 K 4,502 254 468 3.1 34.2 34.2 L 4,977 46 256 5.6 34.9 34.9 M 5,332 88 344 4.2 36.1 36.1 N 5,552 76 343 4.2 | $\begin{array}{ccccc} 25.4^2 & & 0.0 \\ 26.4^2 & & 0.1 \\ 27.0^4 & & 0.4 \\ 27.3^4 & & 0.5 \\ 27.7^4 & & 0.7 \\ 27.8^4 & & 0.8 \end{array}$ | | C 660 104 523 3.1 26.2/26.0/26.0³ D 1,160 213 816 2.0 26.5/26.1/26.7³ E 1,510 325 811 2.0 26.7/26.9/27.6³ F 2,020 328 862 1.9 26.9/27.7/28.4³ G 2,279 257 831 1.9 26.9/28.5/29.4³ H 2,939 378 1,148 1.4 27.3/29.5/30.0³ I 3,654 213 697 2.4 28.8/30.8/30.1³ J 4,117 137 490 2.9 33.7 K 4,502 254 468 3.1 34.2 L 4,977 46 256 5.6 34.9 M 5,332 88 344 4.2 36.1 N 5,552 76 343 4.2 36.9 O 6,070 109 459 3.1 38.6 | C 660 104 523 3.1 26.2/26.0/26.0³ 26.3² D 1,160 213 816 2.0 26.5/26.1/26.7³ 26.6⁴ E 1,510 325 811 2.0 26.7/26.9/27.6³ 26.8⁴ F 2,020 328 862 1.9 26.9/27.7/28.4³ 27.0⁴ G 2,279 257 831 1.9 26.9/28.5/29.4³ 27.0⁴ H 2,939 378 1,148 1.4 27.3/29.5/30.0³ 27.3⁴ I 3,654 213 697 2.4 28.8/30.8/30.1³ 27.5⁴ J 4,117 137 490 2.9 33.7 33.7 K 4,502 254 468 3.1 34.2 34.2 L 4,977 46 256 5.6 34.9 34.9 M 5,332 88 344 4.2 36.1 36.1 N 5,552 76 343 4.2 36.9 36.9 | $\begin{array}{cccc} 26.4^2 & & 0.1 \\ 27.0^4 & & 0.4 \\ 27.3^4 & & 0.5 \\ 27.7^4 & & 0.7 \\ 27.8^4 & & 0.8 \end{array}$ | | C 660 104 523 3.1 26.2/26.0/26.0³ D 1,160 213 816 2.0 26.5/26.1/26.7³ E 1,510 325 811 2.0 26.7/26.9/27.6³ F 2,020 328 862 1.9 26.9/27.7/28.4³ G 2,279 257 831 1.9 26.9/28.5/29.4³ H 2,939 378 1,148 1.4 27.3/29.5/30.0³ I 3,654 213 697 2.4 28.8/30.8/30.1³ J 4,117 137 490 2.9 33.7 K 4,502 254 468 3.1 34.2 L 4,977 46 256 5.6 34.9 M 5,332 88 344 4.2 36.1 N 5,552 76 343 4.2 36.9 O 6,070 109 459 3.1 38.6 | C 660 104 523 3.1 26.2/26.0/26.0³ 26.3² D 1,160 213 816 2.0 26.5/26.1/26.7³ 26.6⁴ E 1,510 325 811 2.0 26.7/26.9/27.6³ 26.8⁴ F 2,020 328 862 1.9 26.9/27.7/28.4³ 27.0⁴ G 2,279 257 831 1.9 26.9/28.5/29.4³ 27.0⁴ H 2,939 378 1,148 1.4 27.3/29.5/30.0³ 27.3⁴ I 3,654 213 697 2.4 28.8/30.8/30.1³ 27.5⁴ J 4,117 137 490 2.9 33.7 33.7 K 4,502 254 468 3.1 34.2 34.2 L 4,977 46 256 5.6 34.9 34.9 M 5,332 88 344 4.2 36.1 36.1 N 5,552 76 343 4.2 36.9 36.9 | $\begin{array}{cccc} 26.4^2 & & 0.1 \\ 27.0^4 & & 0.4 \\ 27.3^4 & & 0.5 \\ 27.7^4 & & 0.7 \\ 27.8^4 & & 0.8 \end{array}$ | | D 1,160 213 816 2.0 26.5/26.1/26.7³ E 1,510 325 811 2.0 26.7/26.9/27.6³ F 2,020 328 862 1.9 26.9/27.7/28.4³ G 2,279 257 831 1.9 26.9/28.5/29.4³ H 2,939 378 1,148 1.4 27.3/29.5/30.0³ I 3,654 213 697 2.4 28.8/30.8/30.1³ J 4,117 137 490 2.9 33.7 K 4,502 254 468 3.1 34.2 L 4,977 46 256 5.6 34.9 M 5,332 88 344 4.2 36.1 N 5,552 76 343 4.2 36.9 O 6,070 109 459 3.1 38.6 | D 1,160 213 816 2.0 26.5/26.1/26.7³ 26.6⁴ E 1,510 325 811 2.0 26.7/26.9/27.6³ 26.8⁴ F 2,020 328 862 1.9 26.9/27.7/28.4³ 27.0⁴ G 2,279 257 831 1.9 26.9/28.5/29.4³ 27.0⁴ H 2,939 378 1,148 1.4 27.3/29.5/30.0³ 27.3⁴ I 3,654 213 697 2.4 28.8/30.8/30.1³ 27.5⁴ J 4,117 137 490 2.9 33.7 33.7 K 4,502 254 468 3.1 34.2 34.2 L 4,977 46 256 5.6 34.9 34.9 M 5,332 88 344 4.2 36.1 36.1 N 5,552 76 343 4.2 36.9 36.9 | $\begin{array}{cccc} 27.0^4 & 0.4 \\ 27.3^4 & 0.5 \\ 27.7^4 & 0.7 \\ 27.8^4 & 0.8 \end{array}$ | | E 1,510 325 811 2.0 26.7/26.9/27.6³ F 2,020 328 862 1.9 26.9/27.7/28.4³ G 2,279 257 831 1.9 26.9/28.5/29.4³ H 2,939 378 1,148 1.4 27.3/29.5/30.0³ I 3,654 213 697 2.4 28.8/30.8/30.1³ J 4,117 137 490 2.9 33.7 K 4,502 254 468 3.1 34.2 L 4,977 46 256 5.6 34.9 M 5,332 88 344 4.2 36.1 N 5,552 76 343 4.2 36.9 O 6,070 109 459 3.1 38.6 | E 1,510 325 811 2.0 26.7/26.9/27.6 ³ 26.8 ⁴ F 2,020 328 862 1.9 26.9/27.7/28.4 ³ 27.0 ⁴ G 2,279 257 831 1.9 26.9/28.5/29.4 ³ 27.0 ⁴ H 2,939 378 1,148 1.4 27.3/29.5/30.0 ³ 27.3 ⁴ I 3,654 213 697 2.4 28.8/30.8/30.1 ³ 27.5 ⁴ J 4,117 137 490 2.9 33.7 33.7 K 4,502 254 468 3.1 34.2 34.2 L 4,977 46 256 5.6 34.9 34.9 M 5,332 88 344 4.2 36.1 36.1 N 5,552 76 343 4.2 36.9 | 27.3 ⁴ 0.5
27.7 ⁴ 0.7
27.8 ⁴ 0.8 | | F 2,020 328 862 1.9 26.9/27.7/28.4³ G 2,279 257 831 1.9 26.9/28.5/29.4³ H 2,939 378 1,148 1.4 27.3/29.5/30.0³ I 3,654 213 697 2.4 28.8/30.8/30.1³ J 4,117 137 490 2.9 33.7 K 4,502 254 468 3.1 34.2 L 4,977 46 256 5.6 34.9 M 5,332 88 344 4.2 36.1 N 5,552 76 343 4.2 36.9 O 6,070 109 459 3.1 38.6 | F 2,020 328 862 1.9 26.9/27.7/28.4 ³ 27.0 ⁴ 2.279 257 831 1.9 26.9/28.5/29.4 ³ 27.0 ⁴ 4.148 1.4 27.3/29.5/30.0 ³ 27.3 ⁴ 1 3,654 213 697 2.4 28.8/30.8/30.1 ³ 27.5 ⁴ 3.7 490 2.9 33.7 33.7 K 4,502 254 468 3.1 34.2 34.2 L 4,977 46 256 5.6 34.9 34.9 M 5,332 88 344 4.2 36.1 36.1 N 5,552 76 343 4.2 36.9 36.9 | 27.7 ⁴ 0.7
27.8 ⁴ 0.8 | | G 2,279 257 831 1.9 26.9/28.5/29.4 ³ H 2,939 378 1,148 1.4 27.3/29.5/30.0 ³ I 3,654 213 697 2.4 28.8/30.8/30.1 ³ J 4,117 137 490 2.9 33.7 K 4,502 254 468 3.1 34.2 L 4,977 46 256 5.6 34.9 M 5,332 88 344 4.2 36.1 N 5,552 76 343 4.2 36.9 O 6,070 109 459 3.1 38.6 | G 2,279 257 831 1.9 26.9/28.5/29.4 ³ 27.0 ⁴ H 2,939 378 1,148 1.4 27.3/29.5/30.0 ³ 27.3 ⁴ I 3,654 213 697 2.4 28.8/30.8/30.1 ³ 27.5 ⁴ J 4,117 137 490 2.9 33.7 33.7 K 4,502 254 468 3.1 34.2 34.2 L 4,977 46 256 5.6 34.9 34.9 M 5,332 88 344 4.2 36.1 36.1 N 5,552 76 343 4.2 36.9 36.9 | 27.8 ⁴ 0.8 | | H 2,939 378 1,148 1.4 27.3/29.5/30.0 ³ I 3,654 213 697 2.4 28.8/30.8/30.1 ³ J 4,117 137 490 2.9 33.7 K 4,502 254 468 3.1 34.2 L 4,977 46 256 5.6 34.9 M 5,332 88 344 4.2 36.1 N 5,552 76 343 4.2 36.9 O 6,070 109 459 3.1 38.6 | H 2,939 378
1,148 1.4 27.3/29.5/30.0 ³ 27.3 ⁴ I 3,654 213 697 2.4 28.8/30.8/30.1 ³ 27.5 ⁴ J 4,117 137 490 2.9 33.7 33.7 K 4,502 254 468 3.1 34.2 34.2 L 4,977 46 256 5.6 34.9 34.9 M 5,332 88 344 4.2 36.1 36.1 N 5,552 76 343 4.2 36.9 36.9 | | | I 3,654 213 697 2.4 28.8/30.8/30.1³ J 4,117 137 490 2.9 33.7 K 4,502 254 468 3.1 34.2 L 4,977 46 256 5.6 34.9 M 5,332 88 344 4.2 36.1 N 5,552 76 343 4.2 36.9 O 6,070 109 459 3.1 38.6 | I 3,654 213 697 2.4 28.8/30.8/30.1³ 27.5⁴ J 4,117 137 490 2.9 33.7 33.7 K 4,502 254 468 3.1 34.2 34.2 L 4,977 46 256 5.6 34.9 34.9 M 5,332 88 344 4.2 36.1 36.1 N 5,552 76 343 4.2 36.9 36.9 | | | J 4,117 137 490 2.9 33.7 K 4,502 254 468 3.1 34.2 L 4,977 46 256 5.6 34.9 M 5,332 88 344 4.2 36.1 N 5,552 76 343 4.2 36.9 O 6,070 109 459 3.1 38.6 | J 4,117 137 490 2.9 33.7 33.7 K 4,502 254 468 3.1 34.2 34.2 L 4,977 46 256 5.6 34.9 34.9 M 5,332 88 344 4.2 36.1 36.1 N 5,552 76 343 4.2 36.9 36.9 | 28.5 ⁴ 1.0 | | K 4,502 254 468 3.1 34.2 L 4,977 46 256 5.6 34.9 M 5,332 88 344 4.2 36.1 N 5,552 76 343 4.2 36.9 O 6,070 109 459 3.1 38.6 | K 4,502 254 468 3.1 34.2 34.2 L 4,977 46 256 5.6 34.9 34.9 M 5,332 88 344 4.2 36.1 36.1 N 5,552 76 343 4.2 36.9 36.9 | 33.7 0.0 | | L 4,977 46 256 5.6 34.9 M 5,332 88 344 4.2 36.1 N 5,552 76 343 4.2 36.9 O 6,070 109 459 3.1 38.6 | L 4,977 46 256 5.6 34.9 34.9 M 5,332 88 344 4.2 36.1 36.1 N 5,552 76 343 4.2 36.9 36.9 | 34.2 0.0 | | N 5,552 76 343 4.2 36.9
O 6,070 109 459 3.1 38.6 | N 5,552 76 343 4.2 36.9 36.9 | 34.9 0.0 | | O 6,070 109 459 3.1 38.6 | | 36.1 0.0 | | | | 36.9 0.0 | | P 6.869 540 2.769 0.5 39.0 | | 38.6 0.0 | | | | 39.0 0.0 | | Q 7,779 98 367 3.9 39.6 | | 39.6 0.0 | | R 8,094 74 372 3.9 40.7 | | 40.7 0.0 | | S 8,902 115 432 3.3 43.2 | S 8,902 115 432 3.3 43.2 43.2 | 43.2 0.0 | ¹Feet Above confluence with Sammamish River KING COUNTY, WA AND INCORPORATED AREAS FLOODWAY DATA NORTH CREEK ²Elevations Computed Without Consideration of Backwater Effects from Sammamish River ³Landward of East Levee/Riverward of Levees/Landward of West Levee ⁴Elevations Computed Without Consideration of Effects of Levees | FLOODING S | OURCE | | FLOODWAY | | 1- | | AL-CHANCE FLO | OD | |---|--|--------|-----------------|------------------|--|---------------------|------------------|----------| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | NORTH FORK ISSAQUAH CREEK A B C D E F G H I J K L M N O | 25
1,159
1,695
2,267
2,389
2,993
3,215
3,887
4,054
4,565
5,122
5,359
5,468
5,814
6,055 | | | | (FEET NAVD) 54.0 ² 57.1 ² 59.3 ² 60.1 ² 61.8 ² 64.3 64.4 65.8 67.9 70.0 75.4 75.4 77.4 85.7 93.6 | | | | | | | | | | | | | | ¹Feet Above Confluence With Issaquah Creek FEDERAL EMERGENCY MANAGEMENT AGENCY KING COUNTY, WA AND INCORPORATED AREAS **FLOODWAY DATA** NORTH FORK ISSAQUAH CREEK ²Backwater Effects from Issaquah Creek | FLOODING SO | DURCE | | FLOODWAY | | 1- | | AL-CHANCE FLO | OD | |------------------|-----------------------|--------|-----------------|------------------|-------------|---------------------|--------------------|----------| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | NORTH FORK | | | | | | | | | | SNOQUALMIE RIVER | 0.40 | 770 | 4 000 | 0.4 | 400.0 | 400 52 | 404.52 | 4.0 | | A | 0.16 | 770 | 4,239 | 6.4 | 429.6 | 423.5 ² | 424.5 ² | 1.0 | | В | 0.28 | 320 | 2,082 | 13.1 | 429.7 | 425.5 ² | 426.1 ² | 0.6 | | С | 0.36 | 155 | 1,923 | 14.1 | 430.7 | 428.1 ² | 428.7 ² | 0.6 | | D | 0.48 | 550 | 5,299 | 5.1 | 432.2 | 432.2 | 432.4 | 0.2 | | E | 0.64 | 1300 | 9,056 | 3.0 | 432.8 | 432.8 | 433.7 | 0.9 | | F | 0.74 | 1100 | 8,352 | 3.3 | 433.3 | 433.3 | 434.3 | 1.0 | | G | 0.84 | 800 | 4,769 | 5.7 | 433.9 | 433.9 | 434.8 | 0.9 | | Н | 0.97 | 1450 | 8,048 | 3.4 | 436.4 | 436.4 | 437.3 | 0.9 | | I | 1.07 | 1562 | 6,883 | 4.0 | 438.0 | 438.0 | 438.5 | 0.5 | | J | 1.17 | 1348 | 6,422 | 4.2 | 438.9 | 438.9 | 439.2 | 0.3 | | K | 1.22 | 1082 | 3,654 | 7.4 | 439.7 | 439.7 | 439.8 | 0.1 | | L | 1.33 | 474 | 2,819 | 9.6 | 444.7 | 444.7 | 445.6 | 0.9 | | M | 1.42 | 294 | 2,245 | 12.1 | 448.4 | 448.4 | 448.4 | 0.0 | | N | 1.50 | 230 | 2,095 | 13.0 | 450.5 | 450.5 | 451.1 | 0.6 | | Ο | 1.57 | 228 | 2,269 | 12.0 | 453.9 | 453.9 | 454.2 | 0.3 | | Р | 1.65 | 240 | 3,472 | 7.8 | 456.1 | 456.1 | 457.0 | 0.9 | | Q | 1.72 | 202 | 1,664 | 16.3 | 458.8 | 458.8 | 458.8 | 0.0 | | R | 1.78 | 280 | 2,734 | 10.0 | 462.5 | 462.5 | 463.2 | 0.7 | | S | 1.86 | 295 | 2,344 | 11.6 | 464.5 | 464.5 | 465.2 | 0.7 | | Т | 1.93 | 234 | 1,987 | 13.7 | 466.8 | 466.8 | 467.3 | 0.5 | | U | 2.01 | 227 | 1,944 | 14.0 | 470.1 | 470.1 | 470.4 | 0.3 | | V | 2.10 | 268 | 2,442 | 11.1 | 473.9 | 473.9 | 474.8 | 0.9 | | W | 2.16 | 267 | 2,280 | 11.9 | 476.2 | 476.2 | 476.5 | 0.3 | | X | 2.24 | 164 | 1,598 | 17.0 | 478.3 | 478.3 | 478.3 | 0.0 | | Υ | 2.32 | 190 | 1,959 | 13.9 | 482.9 | 482.9 | 483.0 | 0.1 | | Z | 2.42 | 147 | 1,524 | 17.9 | 486.2 | 486.2 | 486.0 | 0.2 | | | | | | | | | | | ¹Miles Above Mouth ²Elevations Computed Without Consideration of Backwater Effects from Middle Fork Snoqualmie River | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | | | | |-------------------------------------|-----------------------------|--|--|--| | KING COUNTY, WA | I LOODWAT DATA | | | | | KING COUNTT, WA | NORTH FORK SNOOHALMIE DIVED | | | | | AND INCORPORATED AREAS | NORTH FORK SNOQUALMIE RIVER | | | | | FLOODING SO | DURCE | | FLOODWAY | | 1- | | AL-CHANCE FLO | OD | |------------------------------|-----------------------|--------|-----------------|------------------|-------------|---------------------|------------------|----------| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | NORTH FORK
THORNTON CREEK | | | | | | | | | | Υ | 7,470 | 12 | 33 | 9.7 | 54.6 | 54.6 | 54.6 | 0.0 | | Z | 7,801 | 15 | 36 | 8.8 | 59.3 | 59.3 | 59.3 | 0.0 | | AA | 8,020 | 14 | 48 | 6.7 | 62.2 | 62.2 | 62.2 | 0.0 | | AB | 8,550 | 16 | 40 | 7.0 | 66.7 | 66.7 | 66.7 | 0.0 | | AC | 9,271 | 6 | 18 | 10.2 | 88.2 | 88.2 | 88.2 | 0.0 | | AD | 9,406 | 14 | 59 | 3.0 | 93.3 | 93.3 | 93.3 | 0.0 | | AE | 9,635 | 15 | 25 | 7.3 | 97.7 | 97.7 | 97.7 | 0.0 | | AF | 9,840 | 24 | 37 | 4.8 | 99.9 | 99.9 | 100.0 | 0.1 | | AG | 10,550 | 15 | 24 | 7.4 | 111.3 | 111.3 | 111.3 | 0.0 | | AH | 11,328 | 5 | 17 | 10.5 | 131.5 | 131.5 | 131.5 | 0.0 | | Al | 11,690 | 16 | 25 | 7.2 | 136.8 | 136.8 | 136.8 | 0.0 | | AJ | 12,345 | 13 | 24 | 7.6 | 148.0 | 148.0 | 148.0 | 0.0 | | AK | 13,035 | 4 | 16 | 11.1 | 166.8 | 166.8 | 166.8 | 0.0 | | AL | 13,200 | 17 | 66 | 2.7 | 169.9 | 169.9 | 169.9 | 0.0 | | AM | 13,672 | 4 | 14 | 10.7 | 176.2 | 176.2 | 176.2 | 0.0 | | AN | 13,836 | 21 | 60 | 2.5 | 181.6 | 181.6 | 181.6 | 0.0 | | AO | 14,570 | 24 | 25 | 5.9 | 191.1 | 191.1 | 191.1 | 0.0 | | AP | 15,560 | 22 | 25 | 6.1 | 206.8 | 206.8 | 206.8 | 0.0 | | AQ | 15,953 | 7 | 16 | 9.1 | 216.7 | 216.7 | 216.7 | 0.0 | | AR | 16,095 | 11 | 27 | 5.5 | 220.4 | 220.4 | 220.4 | 0.0 | | AS | 16,750 | 10 | 19 | 7.8 | 232.2 | 232.2 | 232.2 | 0.0 | | AT | 17,190 | 7 | 14 | 7.9 | 237.5 | 237.5 | 237.5 | 0.0 | | AU | 17,395 | 13 | 29 | 3.8 | 240.2 | 240.2 | 240.2 | 0.0 | | AV | 17,555 | 10 | 21 | 5.4 | 240.7 | 240.7 | 240.7 | 0.0 | | AW | 17,884 | 8 | 18 | 6.0 | 243.3 | 243.3 | 243.4 | 0.1 | | AX | 18,045 | 40 | 0 | 1.6 | 244.7 | 244.7 | 244.8 | 0.1 | | AY | 19,003 | 7 | 10 | 11.6 | 251.7 | 251.7 | 251.7 | 0.0 | | AZ | 19,204 | 60 | 219 | 0.5 | 257.6 | 257.6 | 257.6 | 0.0 | ¹Feet Above Mouth FEDERAL EMERGENCY MANAGEMENT AGENCY KING COUNTY, WA AND INCORPORATED AREAS FLOODWAY DATA NORTH FORK THORNTON CREEK | FLOODING SC | FLOODING SOURCE | | FLOODWAY | | | CENT-ANNUAL-C
ATER SURFACE I | | | |-----------------|-----------------------|----------|-----------------|------------------|-------------------|---------------------------------|------------------|------------| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | PATTERSON CREEK | | | | | | | | | | A | 78 | 222 | 736 | 1.1 | 86.3 ² | 75.3 | 76.2 | 0.9 | | В | 1,015 | 390 | 1,697 | 0.5 | 86.3 ² | 75.4 | 76.4 | 1.0 | | С | 2,349 | 181 | 499 | 1.2 | 86.3 ² | 76.2 | 77.0 | 0.8 | | D | 3,126 | 170 | 574 | 1.1 | 86.3 ² | 78.6 | 79.0 | 0.4 | | E | 3,733 | 39 | 177 | 3.4 | 86.3 ² | 79.0 | 79.6 | 0.6 | | F | 4,694 | 70 | 321 | 1.9 | 86.3 ² | 81.3 | 81.9 | 0.7 | | G | 5,485 | 71 | 268 | 2.3 | 86.3 ² | 82.2 | 83.2 | 1.0 | | Н | 7,142 | 80 | 300 | 2.0 | 87.3 | 87.3 | 88.3 | 1.0 | | Ï | 9,568 | 55 | 198 | 2.3 | 95.2 | 95.2 | 96.1 | 0.9 | | j
J | 10,999 | 33 | 178 | 2.5 | 101.5 | 101.5 | 101.9 | 0.4 | | K | 12,600 | 113 | 650 | 0.7 | 101.7 | 101.7 | 102.5 | 0.9 | | L | 14,724 | 170 | 576 | 0.8 | 101.9 | 101.9 | 102.9 | 1.0 | | M | 16,491 | 168 | 458 | 1.0 | 102.6 | 102.6 | 103.6 | 1.0 | | N | 17,923 | 168 | 346 | 1.3 | 104.3 | 104.3 | 105.3 | 1.0 | | 0 | 19,117 | 151 | 539 | 0.7 | 104.9 | 104.9 | 105.9 | 1.0 | | Р | 20,662 | 282 | 502 | 0.8 | 105.6 | 105.6 | 106.6 | 1.0 | | Q | 22,700 | 160 | 444 | 0.9 | 106.4 | 106.4 | 107.4 | 1.0 | | R | 23,798 | 284 | 554 | 0.7 | 107.0 |
107.0 | 107.9 | 0.9 | | S | 24,919 | 191 | 471 | 0.8 | 108.4 | 108.4 | 109.3 | 0.9 | | Т | 26,301 | 300 | 545 | 0.6 | 109.4 | 109.4 | 110.3 | 1.0 | | U | 27,033 | 167 | 407 | 0.8 | 109.9 | 109.9 | 110.9 | 1.0 | | V | 27,788 | 270 | 604 | 0.5 | 110.1 | 110.1 | 111.1 | 1.0 | | W | 29,211 | 120 | 461 | 0.7 | 110.6 | 110.6 | 111.5 | 0.9 | | X | 30,573 | 124 | 326 | 1.0 | 111.8 | 111.8 | 112.7 | 0.9 | | Y
Z | 31,251
33,279 | 81
83 | 329
360 | 1.3
1.4 | 113.3
115.6 | 113.3
115.6 | 114.2
116.5 | 1.0
0.9 | | <u> </u> | 33,213 | 03 | 300 | 1.4 | 110.0 | 113.0 | 110.5 | 0.9 | ¹Feet Above SE 24th Street FEDERAL EMERGENCY MANAGEMENT AGENCY KING COUNTY, WA AND INCORPORATED AREAS **FLOODWAY DATA** **PATTERSON CREEK** ²Elevation controled by backwater of Snoqualmie River | FLOODING SOURCE | | | FLOODWAY | | 1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION | | | | |-----------------|-----------------------|-----------------|------------------------------|---------------------------------|---|------------------------------------|---------------------------------|--------------------| | CROSS SECTION | DISTANCE ¹ | WIDTH
(FEET) | SECTION
AREA
(SQ.FEET) | MEAN
VELOCITY
(FEET/SEC.) | REGULATORY
(FEET NAVD) | WITHOUT
FLOODWAY
(FEET NAVD) | WITH
FLOODWAY
(FEET NAVD) | INCREASE
(FEET) | | PATTERSON CREEK | | (1221) | (04.1 221) | (1 EE 170EO.) | (12211010) | (I EET IV(VD) | (I EET WAY) | (1 LL1) | | AA | 34,370 | 165 | 483 | 0.7 | 115.8 | 115.8 | 116.8 | 1.0 | | AB | 36,032 | 90 | 211 | 1.1 | 117.4 | 117.4 | 118.4 | 1.0 | | AC | 37,942 | 60 | 131 | 1.8 | 121.8 | 121.8 | 122.8 | 1.0 | | AD | 39,012 | 90 | 205 | 1.2 | 123.8 | 123.8 | 124.8 | 1.0 | | AE | 40,516 | 82 | 112 | 2.1 | 130.0 | 130.0 | 130.9 | 0.9 | | AF | 41,035 | 65 | 111 | 2.2 | 133.1 | 133.1 | 133.5 | 0.4 | | AG | 42,279 | 31 | 40 | 3.7 | 141.9 | 141.9 | 142.9 | 1.0 | | AH | 43,233 | 13 | 31 | 4.8 | 158.9 | 158.9 | 158.9 | 0.0 | | Al | 43,512 | 13 | 31 | 4.9 | 161.9 | 161.9 | 162.5 | 0.6 | | | | | | | | | | | ¹Feet Above SE 24th Street | FLOODING SOURCE | | | FLOODWAY | | | CENT-ANNUAL-C | | | |-----------------|-----------------------|------------|-----------------|------------------|--------------------------------|---------------------|--------------------|------------| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | RAGING RIVER | | | | | | | | | | Α | 200 | 436 | 1,130 | 6.6 | 101.1 | 85.3 ² | 86.3 ² | 1.0 | | В | 698 | 308 | 807 | 9.2 | 102.1 | 94.3 ² | 95.3 ² | 1.0 | | С | 1,607 | 522 | 1,481 | 5.0 | 104.6/105.2/104.1 ³ | 102.5 ⁴ | 103.5⁴ | 1.0 | | D | 2,183 | 476 | 1,075 | 6.9 | 107.8/108.0/105.7 ³ | 105.6 ⁴ | 106.6 ⁴ | 1.0 | | Е | 2,667 | 164 | 926 | 8.0 | 112.4/114.2/112.4 ³ | 112.4 ⁴ | 112.44 | 0.0 | | F | 3,000 | 242 | 835 | 8.9 | 114.6/114.7/115.0 ³ | 114.6 ⁴ | 114.6 ⁴ | 0.0 | | G | 3,519 | 87 | 653 | 11.4 | 117.6/119.4/118.5 ³ | 117.4 ⁴ | 118.4 ⁴ | 1.0 | | Н | 3,935 | 116 | 693 | 10.7 | 122.1/122.4/121.7 ³ | 121.8 ⁴ | 122.3 ⁴ | 0.5 | | I | 4,447 | 122 | 891 | 8.3 | 125.9/125.8/126.2 ³ | 125.9 ⁴ | 126.3 ⁴ | 0.4 | | J | 5,117 | 135 | 695 | 10.7 | 131.3/131.5/131.5 ³ | 131.24 | 131.5⁴ | 0.3 | | K | 5,498 | 134 | 751 | 9.9 | 135.9/135.8/135.7 ³ | 135.8 ⁴ | 135.8⁴ | 0.0 | | L | 5,868 | 95 | 571 | 13.0 | 139.5/139.5/139.6 ³ | 139.5 ⁴ | 139.5⁴ | 0.0 | | M | 6,372 | 105 | 742 | 10.0 | 145.6/145.6/145.5 ³ | 145.5 ⁴ | 145.5 ⁴ | 0.0 | | N | 6,824 | 92 | 576 | 12.9 | 150.4/150.4/150.3 ³ | 150.3 ⁴ | 150.3⁴ | 0.0 | | 0 | 7,388 | 77 | 575 | 12.9 | 159.1/159.1/159.2 ³ | 159.1 ⁴ | 159.1⁴ | 0.0 | | Р | 7,720 | 97 | 623 | 11.9 | 163.5/163.5/163.5 ³ | 163.5 ⁴ | 163.5⁴ | 0.0 | | Q | 8,246 | 98 | 700 | 10.6 | 169.9 | 169.9 | 170.2 | 0.3 | | Q
R | 8,746 | 86 | 592 | 12.5 | 175.2 | 175.2 | 175.2 | 0.0 | | S
T | 9,301 | 86 | 595 | 12.5 | 182.0 | 182.0 | 182.9 | 0.9 | | | 9,804 | 283 | 1,616 | 4.6 | 187.0 | 187.0 | 188.0 | 1.0 | | U | 10,373 | 133 | 641 | 11.6 | 193.0 | 193.0 | 193.1 | 0.1 | | V
W | 10,697
11,106 | 113
122 | 657
1,332 | 11.3
5.6 | 196.6
207.6 | 196.6
207.6 | 197.5
208.0 | 0.9
0.4 | | vv
X | 11,106 | 97 | 648 | 5.6
11.4 | 207.6 | 207.6 | 208.0 | 0.4 | | Ϋ́ | 12,122 | 67 | 487 | 15.2 | 216.5 | 216.5 | 216.5 | 0.0 | | Z | 12,723 | 140 | 858 | 8.6 | 226.9 | 226.9 | 226.9 | 0.0 | | | | | | | | | | | ¹Feet Above Confluence With Snoqualmie River ²Elevations Computed Without Consideration of Influence from Snoqualmie River ³Landward of Left Levee/Riverward of Levees/Landward of Right Levee ⁴Elevations Computed Without Consideration of Levees | FLOODING SO | FLOODING SOURCE | | FLOODING SOURCE FLOODWAY | | | 1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION | | | | | |---------------|-----------------------|--------|--------------------------|------------------|-------------|---|------------------|----------|--|--| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | | | RAGING RIVER | | | | | | | | | | | | AA | 13,162 | 81 | 516 | 14.4 | 234.2 | 234.2 | 234.2 | 0.0 | | | | AB | 13,767 | 96 | 821 | 9.0 | 246.4 | 246.4 | 246.4 | 0.0 | | | | AC | 14,171 | 123 | 620 | 12.0 | 251.8 | 251.8 | 251.9 | 0.1 | | | | AD | 14,636 | 119 | 1,099 | 6.3 | 262.2 | 262.2 | 262.3 | 0.1 | | | | AE | 15,177 | 96 | 658 | 10.6 | 265.5 | 265.5 | 265.8 | 0.3 | | | | AF | 15,862 | 77 | 484 | 14.4 | 277.5 | 277.5 | 278.0 | 0.5 | | | | AG | 16,532 | 90 | 663 | 10.5 | 289.5 | 289.5 | 290.5 | 1.0 | | | | AH | 16,958 | 104 | 540 | 12.9 | 298.1 | 298.1 | 298.1 | 0.0 | | | | Al | 17,808 | 177 | 747 | 9.3 | 317.0 | 317.0 | 317.1 | 0.1 | | | | AJ | 18,647 | 95 | 650 | 10.7 | 329.7 | 329.7 | 329.7 | 0.0 | | | | AK | 19,379 | 121 | 776 | 9.0 | 338.4 | 338.4 | 339.3 | 0.9 | | | | AL | 20,267 | 84 | 595 | 11.7 | 350.0 | 350.0 | 351.0 | 1.0 | | | | AM | 20,827 | 137 | 770 | 9.1 | 358.4 | 358.4 | 359.2 | 0.8 | | | | AN | 21,506 | 97 | 631 | 11.0 | 366.8 | 366.8 | 367.8 | 1.0 | | | | AO | 22,376 | 103 | 705 | 9.9 | 378.2 | 378.2 | 379.2 | 1.0 | | | | AP | 23,127 | 185 | 907 | 7.7 | 385.3 | 385.3 | 386.3 | 1.0 | | | | AQ | 23,828 | 101 | 683 | 10.2 | 397.4 | 397.4 | 397.4 | 0.0 | | | | AR | 24,406 | 100 | 564 | 12.4 | 404.5 | 404.5 | 404.7 | 0.2 | | | | AS | 24,950 | 115 | 639 | 10.9 | 415.6 | 415.6 | 416.0 | 0.4 | | | | AT | 25,526 | 133 | 816 | 8.5 | 423.6 | 423.6 | 423.6 | 0.0 | | | | AU | 25,983 | 79 | 471 | 12.7 | 429.0 | 429.0 | 429.0 | 0.0 | | | | AV | 26,586 | 272 | 845 | 7.1 | 437.4 | 437.4 | 437.6 | 0.2 | | | | AW | 27,197 | 150 | 666 | 9.0 | 444.4 | 444.4 | 444.7 | 0.3 | | | | AX | 27,733 | 93 | 556 | 10.8 | 452.5 | 452.5 | 452.6 | 0.1 | | | | AY | 28,479 | 168 | 789 | 7.6 | 462.7 | 462.7 | 463.1 | 0.4 | | | | AZ | 28,950 | 87 | 459 | 13.1 | 471.2 | 471.2 | 471.2 | 0.0 | | | | | | | | | | | | | | | ¹Feet Above Confluence With Snoqualmie River | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | |-------------------------------------|---------------| | KING COUNTY, WA | FLOODWAT DATA | | KING COUNTT, WA | DACING DIVED | | AND INCORPORATED AREAS | RAGING RIVER | | FLOODING SO | FLOODING SOURCE | | FLOODWAY | | | 1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION | | | | |---|--|--|--|---|--|--|--|---|--| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | | RAGING RIVER | | | | | | | | | | | BA BB BC BD BE BF BG BH BI BJ BK BL BM BN BO BP BQ BR BS BT | 29,643
30,343
31,163
31,933
32,803
33,643
34,413
35,233
36,443
37,183
38,043
38,643
39,273
39,473
39,583
40,003
40,663
41,083
41,283
41,348 | 73 137 176 291 261 162 149 123 164 131 78 105 101 113 96 80 97 117 212 216 | 592
586
751
730
1,211
656
932
470
777
514
592
454
522
625
618
450
604
383
766
987 | 10.2
10.3
8.0
8.2
5.0
9.2
5.2
10.4
6.3
9.5
8.2
10.7
9.3
7.8
7.9
10.8
8.1
8.9
4.4
3.5 | 483.4
493.2
508.3
517.7
530.4
539.7
548.6
558.5
574.9
585.8
598.9
608.6
618.5
622.3
623.7
629.3
638.3
645.7
649.7
650.8 |
483.4
493.2
508.3
517.7
530.4
539.7
548.6
558.5
574.9
585.8
598.9
608.6
618.5
622.3
623.7
629.3
638.3
645.7
649.7
650.8 | 484.1
494.1
509.3
518.6
531.3
539.8
549.6
558.5
575.9
586.4
599.4
608.6
619.2
622.8
624.3
629.3
639.2
645.8
650.7
651.4 | 0.7
0.9
1.0
0.9
0.1
1.0
0.0
1.0
0.6
0.5
0.0
0.7
0.5
0.6
0.0
0.7
0.5
0.6
0.0 | | | BU
BV
BW | 42,043
42,493
43,123 | 84
58
86 | 313
394
413 | 10.9
8.6
8.3 | 657.8
656.9
676.7 | 657.8
656.9
676.7 | 657.8
667.8
667.4 | 0.6
0.0
0.9
0.7 | | | | | | | | | | | | | ¹Feet Above Confluence With Snoqualmie River | FEDERAL EMERGENCY MANAGEMENT AGENCY KING COUNTY, WA | FLOODWAY DATA | |---|---------------| | AND INCORPORATED AREAS | RAGING RIVER | | AND INCORPORATED AREAS | | | FLOODING SO | FLOODING SOURCE | | FLOODWAY | | 1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION | | | | |-----------------|-----------------------|--------|-----------------|------------------|---|---------------------|------------------|----------| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | SAMMAMISH RIVER | | | | | | | | | | A | 0.25 | 80 | 803 | 4.8 | 18.6 | 18.6 | 18.6 | 0.0 | | В | 1.10 | 45 | 1,007 | 3.5 | 21.1 | 21.1 | 21.1 | 0.0 | | С | 1.30 | 45 | 954 | 3.7 | 21.8 | 21.8 | 21.8 | 0.0 | | D | 1.78 | 128 | 1,081 | 3.2 | 22.7 | 22.7 | 22.8 | 0.1 | | Е | 2.44 | 132 | 1,214 | 2.9 | 23.8 | 23.8 | 23.8 | 0.0 | | F | 2.79 | 130 | 1,253 | 2.6 | 24.3 | 24.3 | 24.3 | 0.0 | | G | 3.52 | 144 | 1,303 | 2.7 | 25.1 | 25.1 | 25.1 | 0.0 | | Н | 3.92 | 138 | 1,196 | 2.9 | 25.6 | 25.6 | 25.6 | 0.0 | | I | 4.90 | 85 | 1,179 | 2.7 | 26.7 | 26.7 | 26.7 | 0.0 | | J | 5.50 | 50 | 1,093 | 2.9 | 27.4 | 27.4 | 27.4 | 0.0 | | K | 6.05 | 50 | 1,068 | 2.8 | 28.0 | 28.0 | 28.0 | 0.0 | | L | 6.30 | 40 | 1,111 | 2.7 | 28.4 | 28.4 | 28.4 | 0.0 | | M | 7.00 | 40 | 1,041 | 2.9 | 29.2 | 29.2 | 29.2 | 0.0 | | N | 7.35 | 55 | 1,144 | 2.6 | 29.6 | 29.6 | 29.6 | 0.0 | | 0 | 7.70 | 45 | 1,159 | 2.6 | 30.0 | 30.0 | 30.0 | 0.0 | | Р | 8.30 | 40 | 1,141 | 2.6 | 30.6 | 30.6 | 30.6 | 0.0 | | Q | 9.20 | 45 | 1,123 | 2.6 | 31.4 | 31.4 | 31.4 | 0.0 | | R | 9.30 | 45 | 1,094 | 2.7 | 31.7 | 31.7 | 31.9 | 0.2 | | S | 10.68 | 45 | 1,184 | 2.5 | 31.9 | 31.9 | 32.3 | 0.4 | | Т | 10.99 | 70 | 1,096 | 2.7 | 32.2 | 32.2 | 32.6 | 0.4 | | U | 11.80 | 75 | 1,111 | 2.6 | 33.2 | 33.2 | 33.4 | 0.2 | | V | 12.79 | 60 | 1,102 | 2.6 | 34.2 | 34.2 | 34.4 | 0.2 | | W | 13.05 | 60 | 1,060 | 2.7 | 34.5 | 34.5 | 34.7 | 0.2 | | Χ | 13.28 | 80 | 1,133 | 2.5 | 34.7 | 34.7 | 34.9 | 0.2 | | Υ | 13.70 | 60 | 1,196 | 1.9 | 35.2 | 35.2 | 35.4 | 0.2 | | Z | 14.15 | 50 | 1,180 | 1.9 | 35.4 | 35.4 | 35.6 | 0.2 | | | | | | | | | | | ¹Miles Above Lake Washington | /1 | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | |----|-------------------------------------|-------------------| | Ē | KING COUNTY, WA | TEODWAT DATA | | ш | • | SAMMAMISH RIVER | | 6 | AND INCORPORATED AREAS | OANIMANIOTI KIVEK | | FLOODING SOURCE | | FLOODWAY | | | 1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION | | | | |-------------------------|-----------------------------------|---|--|----------------------|--|----------------------|--|--| | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | | | | | | | | | | | | 14.35
14.65
14.95 | 180
150
120 | 2,472
1,891
1,977 | 0.9
1.2
1.3 | 35.6
35.6
35.8 | 35.6
35.6
35.8 | 35.7
35.8
36.0 | 0.1
0.2
0.2 | DISTANCE ¹ 14.35 14.65 | DISTANCE ¹ WIDTH (FEET) 14.35 180 14.65 150 | MIDTH SECTION AREA (FEET) (SQ.FEET) 14.35 180 2,472 14.65 150 1,891 | Normalize | DISTANCE ¹ WIDTH SECTION AREA VELOCITY (FEET) (SQ.FEET) (FEET/SEC.) 14.35 180 2,472 0.9 35.6 14.65 150 1,891 1.2 35.6 | DISTANCE | DISTANCE WIDTH SECTION MEAN REGULATORY FLOODWAY FLO | | ¹Miles Above Lake Washington | 1, | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | |----|-------------------------------------|------------------| | B | KING COUNTY, WA | 1 LOODWAT DATA | | F | • | SAMMAMISH RIVER | | 6 | AND INCORPORATED AREAS | OAMINAMIOH KIVEK | | FLOODING S | OURCE | | FLOODWAY | | 1- | | AL-CHANCE FLOO
CE ELEVATION | DD | |------------------|-----------------------|--------|-----------------|------------------|-------------|---------------------|--------------------------------|----------| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | SNOQUALMIE RIVER | | | | | | | | | | A-Z ² | | | | | | | | | | ΑĀ | 29,093 | 8,349 | 154,290 | 0.6 | 49.5 | 49.5 | 50.3 | 0.8 | | AB | 30,307 | 9,736 | 176,349 | 0.5 | 49.5 | 49.5 | 50.4 | 0.8 | | AC | 31,522 | 10,718 | 195,325 | 0.4 | 49.6 | 49.6 | 50.4 | 0.8 | | AD | 33,317 | 10,258 | 190,328 | 0.5 | 49.6 | 49.6 | 50.4 | 0.8 | | AE | 34,901 | 9,136 | 156,198 | 0.6 | 49.6 | 49.6 | 50.4 | 0.8 | | AF | 36,485 | 8,197 | 133,337 | 0.7 | 49.6 | 49.6 | 50.4 | 0.8 | | AG | 37,541 | 7,422 | 118,796 | 0.7 | 49.6 | 49.6 | 50.4 | 0.8 | | AH | 38,597 | 7,035 | 108,917 | 0.8 | 49.6 | 49.6 | 50.5 | 0.8 | | Al | 40,498 | 6,326 | 86,420 | 1.0 | 49.7 | 49.7 | 50.5 | 0.9 | | AJ | 43,666 | 5,713 | 78,894 | 1.1 | 49.8 | 49.8 | 50.7 | 0.9 | | AK | 45,144 | 4,774 | 69,808 | 1.2 | 49.9 | 49.9 | 50.8 | 0.9 | | AL | 46,411 | 4,212 | 64,054 | 1.4 | 50.1 | 50.1 | 51.0 | 0.9 | | AM | 47,520 | 4,366 | 58,375 | 1.5 | 50.2 | 50.2 | 51.0 | 0.9 | | AN | 48,418 | 4,268 | 29,814 | 2.9 | 50.4 | 50.4 | 51.3 | 0.8 | | AO | 48,523 | 4,270 | 30,148 | 2.9 | 50.6 | 50.6 | 51.4 | 0.8 | | AP | 49,632 | 4,610 | 56,052 | 1.6 | 51.1 | 51.1 | 51.8 | 0.7 | | AQ | 50,424 | 4,619 | 64,587 | 1.3 | 51.4 | 51.4 | 52.0 | 0.7 | | AR | 51,480 | 4,706 | 66,796 | 1.3 | 51.4 | 51.4 | 52.1 | 0.7 | | AS | 52,219 | 4,920 | 72,265 | 1.2 | 51.6 | 51.6 | 52.3 | 0.7 | | AT | 52,906 | 4,710 | 64,175 | 0.3 | 51.6 | 51.6 | 52.3 | 0.7 | | AU | NA | AV | NA | AW | NA | AX | 57,658 | 4,253 | 61,149 | 1.4 | 51.8 | 51.8 | 52.5 | 0.7 | | AY | 58,766 | 4,468 | 74,758 | 1.2 | 52.0 | 52.0 | 52.6 | 0.7 | | AZ | 59,506 | 4,598 | 74,866 | 1.2 | 52.0 | 52.0 | 52.7 | 0.7 | TABLE 6 FEDERAL EMERGENCY MANAGEMENT AGENCY KING COUNTY, WA AND INCORPORATED AREAS **FLOODWAY DATA** ² Cross Sections A - Z are shown in Snohomish County, Washington. | CROSS SECTION | | | | | | FLOODWAY (FEET NAVD) FLOODWAY (FEET NAVD) (FET | | | |------------------|-----------------------|--------|-----------------|------------------|-------------
--|-------------|----------| | | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | | | INCREASE | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | SNOQUALMIE RIVER | | | | | | | | | | BA | 60,562 | 4,791 | 68,438 | 1.3 | 52.1 | 52.1 | 52.8 | 0.7 | | BB | 62,093 | 4,750 | 54,454 | 1.6 | 52.2 | 52.2 | 52.9 | 0.7 | | BC | 63,149 | 4,750 | 54,346 | 1.6 | 52.3 | 52.3 | 53.1 | 0.7 | | BD | 64,416 | 4,600 | 55,790 | 1.6 | 52.5 | 52.5 | 53.2 | 0.7 | | BE | 65,472 | 4,600 | 50,712 | 1.7 | 52.6 | 52.6 | 53.4 | 0.8 | | BF | 67,373 | 4,800 | 48,509 | 1.8 | 52.8 | 52.8 | 53.6 | 0.8 | | BG | 69,432 | 4,500 | 42,841 | 2.1 | 52.9 | 52.9 | 53.7 | 0.8 | | BH | 70,118 | 4,400 | 50,075 | 1.8 | 52.9 | 52.9 | 53.7 | | | BI | 72,970 | 4,500 | 44,665 | 2.0 | 53.0 | | | | | BJ | 73,234 | 4,400 | 43,230 | 2.0 | 53.1 | | | | | BK | 73,392 | 4,400 | 43,002 | 2.1 | 53.2 | 53.2 | | | | BL | 74,448 | 4,250 | 47,323 | 1.9 | 53.4 | 53.4 | 54.2 | 0.8 | | ВМ | 75,504 | 3,850 | 46,678 | 1.9 | 53.6 | | | | | BN | 76,560 | 3,300 | 36,781 | 2.4 | 53.8 | | 54.5 | | | во | 77,933 | 4,150 | 40,509 | 2.2 | 54.2 | 54.2 | 55.0 | 0.8 | | BP | 79,622 | 4,125 | 47,041 | 1.9 | 54.4 | | | | | BQ | 80,731 | 4,100 | 48,073 | 1.9 | 54.5 | | | | | BR | 82,526 | 3,950 | 43,092 | 2.1 | 54.7 | | | | | BS | 83,635 | 4,100 | 41,102 | 2.2 | 54.9 | | | | | BT | 85,430 | 4,400 | 37,981 | 2.4 | 55.3 | 55.3 | 56.0 | | | BU | 87,014 | 4,858 | 41,430 | 2.2 | 55.3 | | | | | BV | 88,440 | 5,928 | 63,644 | 1.4 | 55.6 | | | | | BW | 91,978 | 6,622 | 90,166 | 1.0 | 55.7 | | | | | BX | 93,086 | 6,467 | 70,266 | 1.3 | 55.8 | | | | | BY | 94,459 | 6,166 | 62,325 | 1.5 | 56.2 | | | | | BZ | 96,518 | 4,546 | 46,585 | 1.9 | 56.7 | 56.7 | 57.3 | 0.6 | TABLE 6 FEDERAL EMERGENCY MANAGEMENT AGENCY KING COUNTY, WA AND INCORPORATED AREAS **FLOODWAY DATA** | FLOODING S | SOURCE | | FLOODWAY | | 1-1 | | AL-CHANCE FLOO
CE ELEVATION |)D | |---------------------|-----------------------|--------|-----------------|------------------|-------------|---------------------|--------------------------------|----------| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | 0110011411415 | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | SNOQUALMIE
RIVER | | | | | | | | | | CA | 98,736 | 4,109 | 54,421 | 1.7 | 56.7 | 56.7 | 57.3 | 0.6 | | CB | 100,320 | 4,070 | 50,855 | 1.7 | 56.9 | 56.9 | 57.5 | 0.6 | | | | | | | | | 57.5
58.2 | 0.6 | | CC | 101 ,904 | 4,775 | 38,272 | 2.4 | 57.5 | 57.5 | | | | CD | 103,382 | 5,076 | 46,570 | 2.0 | 58.6 | 58.6 | 59.2 | 0.6 | | CE | 104,650 | 5,787 | 54,725 | 1.7 | 58.8 | 58.8 | 59.4 | 0.6 | | CF | 105,970 | 5,413 | 48,236 | 1.9 | 59.1 | 59.1 | 59.7 | 0.6 | | CG | 107,026 | 5,117 | 49,577 | 1.9 | 59.4 | 59.4 | 60.0 | 0.6 | | CH | 108,187 | 4,863 | 50,654 | 1.8 | 59.6 | 59.6 | 60.2 | 0.5 | | CI | 109,349 | 3,940 | 39,050 | 2.4 | 60.2 | 60.2 | 60.7 | 0.5 | | CJ | 110,510 | 4,505 | 45,888 | 2.0 | 60.9 | 60.9 | 61.3 | 0.4 | | CK | 112,358 | 3,906 | 32,898 | 2.8 | 61.6 | 61.6 | 62.1 | 0.5 | | CL | NA | CM | 114,629 | 5,106 | 29,919 | 3.1 | 63.6 | 63.6 | 64.3 | 0.7 | | CN | 115,474 | 4,734 | 30,002 | 3.1 | 64.2 | 64.2 | 65.0 | 0.8 | | CO | 115,579 | 4,658 | 42,349 | 2.2 | 67.9 | 67.9 | 68.7 | 0.9 | | CP | 115,790 | 4,720 | 43,334 | 2.2 | 67.9 | 67.9 | 68.8 | 0.9 | | CQ | 116,635 | 4,717 | 38,422 | 2.4 | 68.0 | 68.0 | 68.9 | 0.9 | | CR | 117,586 | 4,683 | 38,205 | 2.5 | 68.3 | 68.3 | 69.2 | 0.8 | | CS | 118,536 | 4,060 | 29,580 | 3.2 | 68.6 | 68.6 | 69.4 | 0.8 | | CT | 119,909 | 2,603 | 24,994 | 3.8 | 69.8 | 69.8 | 70.6 | 0.8 | | CU | 120,595 | 1,950 | 21,178 | 4.4 | 71.0 | 71.0 | 71.9 | 0.8 | | CV | 121 ,440 | 1,900 | 19,049 | 4.9 | 72.7 | 72.7 | 73.5 | 0.8 | | CW | 122,549 | 1,600 | 19,665 | 4.8 | 74.2 | 74.2 | 75.2 | 1.0 | | CX | 124,133 | 1,800 | 17,744 | 5.3 | 76.0 | 76.0 | 76.8 | 0.9 | | CY | 124,661 | 1,797 | 20,165 | 4.7 | 76.9 | 76.9 | 77.6 | 0.7 | | CZ | 125,136 | 1,788 | 20,620 | 4.1 | 77.7 | 77.7 | 77.0
78.5 | 0.8 | | <i>02</i> | .20,.00 | .,. 33 | _5,5_5 | | | | . 5.5 | 0.0 | **TABLE 6** FEDERAL EMERGENCY MANAGEMENT AGENCY KING COUNTY, WA AND INCORPORATED AREAS **FLOODWAY DATA** | FLOODING S | SOURCE | | FLOODWAY | | 1- | | AL-CHANCE FLOO
CE ELEVATION | DD | |---------------|-----------------------|--------|-----------------|------------------|-------------|---------------------|--------------------------------|---------| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREAS | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | SNOQUALMIE | | | | | | | | | | RIVER | | | | | | | | | | DA | 125,400 | 1,600 | 18,131 | 4.7 | 78.0 | 78.0 | 78.8 | 0.8 | | DB | 125,611 | 1,700 | 17,592 | 4.8 | 77.8 | 77.8 | 78.6 | 0.8 | | DC | 126,086 | 2,100 | 29,527 | 2.9 | 78.5 | 78.5 | 79.3 | 0.7 | | DD | 126,192 | 2,096 | 33,692 | 2.5 | 79.2 | 79.2 | 79.9 | 0.7 | | DE | 127,090 | 2,019 | 34,950 | 2.4 | 79.2 | 79.2 | 79.9 | 0.7 | | DF | 128,146 | 3,214 | 49,109 | 1.8 | 79.3 | 79.3 | 80.1 | 0.7 | | DG | 129,413 | 3,971 | 58,998 | 0.4 | 79.5 | 79.5 | 80.3 | 0.8 | | DH | 130,680 | 1,972 | 35,290 | 1.0 | 79.5 | 79.5 | 80.3 | 0.8 | | DI | 133,003 | 5,376 | 75,091 | 1.1 | 79.5 | 79.5 | 80.3 | 0.8 | | DJ | 134,798 | 5,305 | 75,353 | 1.1 | 79.5 | 79.5 | 80.3 | 0.8 | | DK | 135,907 | 5,322 | 68,282 | 1.2 | 79.6 | 79.6 | 80.4 | 0.8 | | DL | 137,280 | 5,394 | 73,289 | 1.2 | 79.6 | 79.6 | 80.4 | 0.8 | | DM | 138,283 | 5,561 | 66,202 | 1.3 | 79.6 | 79.6 | 80.4 | 0.8 | | DN | 140,026 | 5,120 | 56,474 | 1.5 | 79.8 | 79.8 | 80.6 | 0.8 | | DO | 141,821 | 4,968 | 54,718 | 1.6 | 80.0 | 80.0 | 80.9 | 0.9 | | DP | 143,352 | 5,495 | 58,164 | 1.4 | 80.2 | 80.2 | 81.2 | 1.0 | | DQ | 145,200 | 5,701 | 59,489 | 1.4 | 80.4 | 80.4 | 81.4 | 1.0 | | DR | 146,309 | 5,373 | 54,909 | 1.5 | 80.6 | 80.6 | 81.6 | 1.0 | | DS | 147,840 | 5,490 | 55,823 | 1.5 | 80.8 | 80.8 | 81.8 | 1.0 | | DT | 149,213 | 5,441 | 53,567 | 1.6 | 81.1 | 81.1 | 82.1 | 1.0 | | DU | 150,691 | 4,890 | 49,199 | 1.7 | 81.4 | 81.4 | 82.3 | 0.9 | | DV | 152,434 | 5,627 | 46,924 | 1.8 | 81.9 | 81.9 | 82.8 | 0.9 | | DW | 154,334 | 6,503 | 48,421 | 1.8 | 82.6 | 82.6 | 83.6 | 0.9 | | DX | 160,195 | 6,871 | 48,929 | 1.8 | 82.9 | 82.9 | 83.8 | 0.9 | | DY | 162,835 | 4,894 | 35,989 | 2.4 | 83.5 | 83.5 | 84.3 | 0.8 | | DZ | 164,472 | 4,824 | 33,599 | 2.6 | 84.3 | 84.3 | 85.1 | 0.8 | | 5_ | | 1,02 . | 30,000 | | 00 | 0 1.0 | 55.1 | 0.0 | | | | | | | | | | | FEDERAL EMERGENCY MANAGEMENT AGENCY KING COUNTY, WA AND INCORPORATED AREAS **FLOODWAY DATA** | FLOODING S | SOURCE | FLOODWAY | | | 1-1 | | 1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION WITHOUT WITH | | | | | |---------------|-----------------------|----------|-----------------|------------------|-------------|---------------------|--|---------|--|--|--| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREAS | | | | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | | | | SNOQUALMIE | | | | | | | | | | | | | RIVER | | | | | | | | | | | | | EA | 166,690 | 4,646 | 41,293 | 2.1 | 85.0 | 85.0 | 85.7 | 0.7 | | | | | EB | 167,218 | 4,895 | 48,048 | 1.8 | 85.1 | 85.1 | 85.9 | 0.8 | | | | | EC | 167,640 | 4,903 | 45,814 | 1.9 | 85.2 | 85.2 | 86.0 | 0.8 | | | | | ED | 168,643 | 5,399 | 45,622 | 1.9 | 85.6 | 85.6 | 86.4 | 0.8 | | | | | EE | 169,699 | 6,257 | 60,835 | 1.4 | 86.4 | 86.4 | 87.4 | 1.0 | | | | | DF | 171 ,970 | 5,104 | 38,574 | 1.2 | 87.6 | 87.6 | 88.3 | 0.8 | | | | | EG | 172,867 | 4,865 | 37,390 | 1.3 | 88.3 | 88.3 | 88.8 | 0.5 | | | | | EH | 173,818 | 3,752 | 25,958 | 3.4 | 89.5 | 89.5 | 89.8 | 0.3 | | | | | El | 174,715 | 3,395 | 28,696 | 3.0 | 90.7 | 90.7 | 91.0 | 0.3 | | | | | EJ | 176,510 | 2,839 | 20,978 | 4.2 | 92.5 | 92.5 | 92.9 | 0.4 | | | | | EK | 177,038 | 2,571 | 20,961 | 4.2 | 93.1 | 93.1 | 93.6 | 0.5 | | | | | EL | 177,989 | 2,181 | 17,602 | 5.0 | 94.1 | 94.1 | 94.8 | 0.7 | | | | | EM | 178,886 | 2,296 | 16,214 | 5.4 | 94.9 | 94.9 | 95.9 | 1.0 | | | | | EN | 179,626 | 1,899 | 14,126 | 6.2 | 96.2 | 96.2 | 97.1 | 0.9 | | | | | EO | 180,259 | 1,276 | 15,255 | 5.7 | 98.4 | 98.4 | 99.1 | 0.7 | | | | | EP | 180,365 | 1,267 | 14,274 | 6.1 | 98.8 | 98.8 | 99.5 | 0.7 | | | | | EQ | 180,682 |
1,249 | 13,346 | 6.1 | 100.3 | 100.3 | 100.9 | 0.6 | | | | | ER | 181,421 | 1,271 | 14,349 | 5.7 | 101.6 | 101.6 | 102.2 | 0.6 | | | | | ES | 181,843 | 1,359 | 15,525 | 5.3 | 102.0 | 102.0 | 102.4 | 0.4 | | | | | ET | 183,322 | 2,085 | 24,552 | 3.3 | 103.2 | 103.2 | 104.1 | 0.9 | | | | | EU | 184,800 | 2,606 | 27,882 | 2.9 | 103.5 | 103.5 | 104.3 | 0.8 | | | | | EV | 186,014 | 3,100 | 34,729 | 2.4 | 103.7 | 103.7 | 104.5 | 0.8 | | | | | EW | 186,965 | 3,448 | 33,330 | 2.5 | 103.8 | 103.8 | 104.7 | 0.8 | | | | | EX | 187,915 | 2,925 | 24,543 | 3.3 | 104.1 | 104.1 | 104.9 | 0.8 | | | | | EY | 188,813 | 2,721 | 26,214 | 3.1 | 104.4 | 104.4 | 105.2 | 0.7 | | | | | EZ | 189,922 | 2,172 | 19,201 | 4.3 | 104.7 | 104.7 | 105.4 | 0.7 | | | | TABLE 6 FEDERAL EMERGENCY MANAGEMENT AGENCY KING COUNTY, WA AND INCORPORATED AREAS **FLOODWAY DATA** | FLOODING S | SOURCE | | FLOODWAY | | 1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION | | | | | |---------------------|-----------------------|--------|-----------------|------------------|---|---------------------|------------------|----------|--| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASI | | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | | SNOQUALMIE
RIVER | | | | | | | | | | | FA | 191,083 | 946 | 9,806 | 8.4 | 106.7 | 106.7 | 107.1 | 0.4 | | | FB | 192,350 | 500 | 7,968 | 10.4 | 110.7 | 110.7 | 110.7 | 0.1 | | | FC | 193,248 | 434 | 7,724 | 10.7 | 112.8 | 112.8 | 113.0 | 0.2 | | | FD | 194,304 | 839 | 13,812 | 6.0 | 115.9 | 115.9 | 116.3 | 0.4 | | | FE | 195,466 | 1,650 | 21,951 | 3.8 | 116.7 | 116.7 | 117.2 | 0.5 | | | FF | 196,152 | 1,700 | 18,344 | 4.5 | 117.0 | 117.0 | 117.6 | 0.5 | | | FG | 197,155 | 846 | 8,020 | 10.3 | 117.2 | 117.2 | 117.6 | 0.4 | | | FH | 198,053 | 300 | 7,711 | 10.3 | 119.7 | 119.7 | 120.0 | 0.4 | | | FI | 199,162 | 360 | 5,459 | 14.5 | 119.5 | 119.5 | 119.8 | 0.3 | | | FJ | 199,901 | 363 | 7,182 | 11.0 | 122.8 | 122.8 | 123.1 | 0.3 | | | FK | 201 ,485 | 188 | 3,578 | 22.1 | 125.4 | 125.4 | 125.7 | 0.3 | | | FL | 40.42 ² | 283 | 4,593 | 17.4 | 416.6 | 416.6 | 416.6 | 0.0 | | | FM | 40.66 ² | 568 | 9,384 | 8.5 | 422.9 | 422.9 | 422.9 | 0.0 | | | FN | 40.72 ² | 890 | 13,988 | 5.7 | 423.5 | 423.5 | 423.9 | 0.4 | | | FO | 40.94 ² | 1,618 | 19,978 | 3.9 | 424.4 | 424.4 | 424.8 | 0.4 | | | FP | 41 .19 ² | 2,340 | 24,106 | 3.3 | 425.2 | 425.2 | 425.4 | 0.2 | | | FQ | 41.34 ² | 2,580 | 25,544 | 3.1 | 425.4 | 425.4 | 425.6 | 0.2 | | | FR | 41.68 ² | 4,430 | 57,914 | 1.4 | 425.7 | 425.7 | 426.3 | 0.6 | | | FS | 42.00 ² | 5,110 | 75,880 | 1.0 | 426.1 | 426.1 | 426.8 | 0.7 | | | FT | 42.19 ² | 5,356 | 49,249 | 1.6 | 426.5 | 426.5 | 427.5 | 1.0 | | | FU | 42.51 ² | 4,529 | 44,191 | 1.8 | 427.0 | 427.0 | 428.0 | 1.0 | | | FV | 42.80 ² | 4,120 | 53,662 | 1.5 | 427.3 | 427.3 | 428.3 | 1.0 | | | FW | 43.06 ² | 3,900 | 18,226 | 2.7 | 427.5 | 427.5 | 428.3 | 8.0 | | | FX | 43.39 ² | 3,330 | 47,273 | 1.7 | 428.1 | 428.1 | 429.1 | 1.0 | | | FY | 43.67 ² | 3,330 | 40,111 | 2.0 | 428.4 | 428.4 | 429.4 | 1.0 | | | | | | | | | | | | | TABLE 6 FEDERAL EMERGENCY MANAGEMENT AGENCY KING COUNTY, WA AND INCORPORATED AREAS **FLOODWAY DATA** ²Miles Above Confluence with Skykomish River | FLOODING SC | DURCE | | FLOODWAY | | 1- | | AL-CHANCE FLO | OD | |------------------------------------|-----------------------|--------|-----------------|------------------|-------------|---------------------|------------------|----------| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | SOUTH FORK
SKYKOMISH RIVER
A | 56.34 | 1,803 | 13,122 | 5.4 | 754.9 | 754.9 | 755.4 | 0.5 | | В | 56.56 | 1,604 | 11,789 | 6.0 | 757.1 | 757.1 | 757.7 | 0.6 | | С | 56.77 | 1,825 | 15,350 | 4.6 | 760.0 | 760.0 | 760.8 | 0.8 | | D | 56.97 | 545 | 6,845 | 10.4 | 762.4 | 762.4 | 762.9 | 0.5 | | E | 57.21 | 570 | 6,632 | 10.8 | 766.6 | 766.6 | 767.1 | 0.5 | | F | 57.38 | 461 | 5,835 | 12.2 | 769.6 | 769.6 | 770.6 | 1.0 | | G | 57.46 | 364 | 5,039 | 14.2 | 772.4 | 772.4 | 772.8 | 0.4 | | Н | 57.67 | 467 | 6,544 | 10.9 | 778.0 | 778.0 | 778.1 | 0.1 | | I | 57.92 | 820 | 6,637 | 10.7 | 782.4 | 782.4 | 782.5 | 0.1 | | J | 58.14 | 1,070 | 8,834 | 8.1 | 787.2 | 787.2 | 787.7 | 0.5 | | K | 58.32 | 1,140 | 8,266 | 8.6 | 789.1 | 789.1 | 790.1 | 1.0 | | L | 58.52 | 715 | 6,726 | 10.6 | 791.9 | 791.9 | 792.1 | 0.2 | | M | 58.73 | 785 | 7,241 | 9.8 | 795.4 | 795.4 | 796.4 | 1.0 | | N | 58.91 | 800 | 7,371 | 9.7 | 799.7 | 799.7 | 799.7 | 0.0 | | 0 | 59.13 | 865 | 9,467 | 7.5 | 804.6 | 804.6 | 805.5 | 0.9 | | Р | 59.27 | 274 | 3,979 | 17.9 | 806.1 | 806.1 | 806.8 | 0.7 | | Q | 59.48 | 671 | 8,695 | 8.2 | 813.9 | 813.9 | 814.3 | 0.4 | | R | 59.70 | 850 | 7,912 | 9.0 | 816.8 | 816.8 | 817.2 | 0.4 | | S | 59.94 | 490 | 6,100 | 11.7 | 822.0 | 822.0 | 822.3 | 0.3 | | Т | 60.11 | 561 | 6,310 | 11.3 | 824.9 | 824.9 | 825.9 | 1.0 | | U | 60.32 | 658 | 8,163 | 8.7 | 830.3 | 830.3 | 830.7 | 0.4 | | V | 60.53 | 950 | 12,476 | 5.7 | 833.9 | 833.9 | 834.5 | 0.6 | | W | 60.74 | 990 | 8,560 | 8.3 | 835.0 | 835.0 | 836.0 | 1.0 | | X | 60.95 | 1,270 | 12,060 | 5.9 | 838.5 | 838.5 | 839.5 | 1.0 | | Υ | 61.18 | 1,255 | 10,668 | 6.7 | 841.2 | 841.2 | 842.2 | 1.0 | | Z | 61.57 | 1,123 | 9,203 | 7.7 | 847.4 | 847.4 | 848.4 | 1.0 | | | | | | | | | | | ¹Miles Above Mouth FEDERAL EMERGENCY MANAGEMENT AGENCY KING COUNTY, WA AND INCORPORATED AREAS FLOODWAY DATA SOUTH FORK SKYKOMISH RIVER | FLOODING SO | DURCE | | FLOODWAY | | 1- | - | AL-CHANCE FLOO
CE ELEVATION | OD | |---|-------------------------|-------------------|--------------------------|----------------------|-------------------------|-------------------------|--------------------------------|-------------------| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | SOUTH FORK
SKYKOMISH RIVER
AA
AB
AC | 61.79
62.13
62.26 | 969
430
316 | 6,569
6,322
5,116 | 10.9
11.3
13.9 | 853.5
861.9
866.9 | 853.5
861.9
866.9 | 854.3
862.6
866.9 | 0.8
0.7
0.0 | | AD
AE
AF | 62.35
62.46
62.64 | 257
177
700 | 4,790
3,665
10,071 | 14.9
19.5
7.1 | 869.3
870.9
877.7 | 869.3
870.9
877.7 | 869.3
870.9
878.5 | 0.0
0.0
0.8 | | AG
AH | 62.84
63.02 | 500
700 | 7,261
7,393 | 9.8
9.6 | 879.2
882.2 | 879.2
882.2 | 879.8
883.1 | 0.6
0.9 | | AI
AJ
AK | 63.39
63.72
63.99 | 782
734
323 | 9,229
7,527
4,637 | 7.7
7.2
11.7 | 889.9
895.3
899.0 | 889.9
895.3
899.0 | 890.9
896.3
899.8 | 1.0
1.0
0.8 | | AL
AM | 64.18
64.36 | 277
291 | 4,195
4,277 | 12.9
12.7 | 904.6
907.6 | 904.6
907.6 | 904.6
908.0 | 0.0
0.4 | | AN
AO
AP | 64.53
64.82
65.11 | 723
283
620 | 7,671
3,442
7,936 | 7.1
15.8
6.8 | 911.2
915.4
924.2 | 911.2
915.4
924.2 | 911.7
915.4
924.8 | 0.5
0.0
0.6 | | AQ
AR | 65.35
65.45 | 637
600 | 7,930
7,145
6,476 | 7.6
8.4 | 926.8
928.5 | 926.8
928.5 | 927.7
929.0 | 0.9
0.5 | | AS
AT
AU | 65.49
65.55
65.61 | 560
548 | 5,299
4,576 | 10.2
11.9
21.2 | 929.2
929.4 | 929.2
929.4 | 929.7
930.4
930.3 | 0.5
1.0
0.0 | | AV
AV
AW | 65.69
65.82 | 195
455
351 | 2,567
6,738
4,327 | 8.1
12.5 | 930.3
937.9
938.5 | 930.3
937.9
938.5 | 930.3
937.9
938.5 | 0.0
0.0
0.0 | | AX
AY
AZ | 65.95
66.05
66.28 | 289
570
619 | 3,660
4,577
3,952 | 14.8
11.9
13.7 | 940.5
943.8
950.1 | 940.5
943.8
950.1 | 941.4
943.8
950.1 | 0.9
0.0
0.0 | | AZ | 00.20 | 019 | 3,902 | 13.1 | 950.1 | 950.1 | 950.1 | 0.0 | ¹Miles Above Mouth FEDERAL EMERGENCY MANAGEMENT AGENCY KING COUNTY, WA AND INCORPORATED AREAS FLOODWAY DATA SOUTH FORK SKYKOMISH RIVER | FLOODING SO | DURCE | | FLOODWAY | | 1-1 | | AL-CHANCE FLO | OD | |--|--|---|--|---|--|--|--|---| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | SOUTH FORK SKYKOMISH RIVER BA BB BC BD BE BF BG BH BI BJ BK BL BM BN | 66.49
66.61
66.72
66.90
67.18
67.39
67.61
67.89
68.05
68.18
68.34
68.59
68.80
69.08 | 374
265
600
1,354
790
233
128
330
360
202
154
159
114 |
4,132
5,133
8,065
7,601
4,099
2,363
1,275
2,989
3,227
2,319
1,752
1,821
1,360
1,245 | 13.1
10.6
2.8
3.0
5.6
9.6
17.9
7.6
7.1
9.8
13.0
12.5
16.8
18.3 | 955.8
964.1
966.0
966.3
969.1
973.0
980.3
992.8
996.4
998.9
1,004.2
1,014.5
1,023.7
1,043.1 | 955.8
964.1
966.0
966.3
969.1
973.0
980.3
992.8
996.4
998.9
1,004.2
1,014.5
1,023.7
1,043.1 | 956.7
964.1
966.0
966.4
969.7
973.7
980.3
992.9
996.4
999.5
1,004.3
1,014.5
1,023.7
1,043.6 | 0.9
0.0
0.0
0.1
0.6
0.7
0.0
0.1
0.0
0.6
0.1
0.0
0.5 | ¹Miles Above Mouth FEDERAL EMERGENCY MANAGEMENT AGENCY KING COUNTY, WA AND INCORPORATED AREAS FLOODWAY DATA SOUTH FORK SKYKOMISH RIVER | FLOODING S | DURCE | | FLOODWAY | | | CENT-ANNUAL-C
ATER SURFACE E | | | |--------------------------------|-----------------------|--------|-----------------|------------------|--------------------------------|---------------------------------|--------------------|---------| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREAS | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | SOUTH FORK
SNOQUALMIE RIVER | | | | | | | | | | Α | 9,400 | 1,681 | 9,892 | 2.0 | 434.6/434.6/434.6 ² | 434.6 ³ | 435.1 ³ | 0.5 | | В | 12,378 | 166 | 1,615 | 9.3 | 440.4/440.7/440.6 ² | 440.4 ³ | 440.4 ³ | 0.0 | | С | 14,432 | 862 | 4,541 | 3.3 | 445.1/446.1/445.3 ² | 444.9 ³ | 445.3 ³ | 0.4 | | D | 14,768 | 721 | 3,772 | 4.0 | 445.6/447.8/446.4 ² | 445.2 ³ | 445.7 ³ | 0.5 | | E | 16,540 | 220 | 2,257 | 6.6 | 450.7/452.1/452.1 ² | 450.3 ³ | 451.1 ³ | 0.8 | | F | 16,960 | 319 | 2,151 | 7.0 | 451.1/452.3/448.7 ² | 450.8 ³ | 451.6 ³ | 0.8 | | G | 17,775 | 860 | 6,143 | 2.4 | 452.8/453.2/453.1 ² | 452.6 ³ | 453.4 ³ | 0.8 | | Н | 18,592 | 421 | 2,361 | 6.4 | 453.3/453.5/453.4 ² | 453.3 ³ | 453.8 ³ | 0.5 | | I | 19,180 | 315 | 2,735 | 5.5 | 454.9/455.4/455.3 ² | 454.9 ³ | 455.3 ³ | 0.4 | | J | 19,545 | 307 | 2,162 | 6.9 | 455.5/455.9/455.8 ² | 455.5 ³ | 455.8 ³ | 0.3 | | K | 20,250 | 304 | 2,053 | 7.3 | 457.5/457.8/457.8 ² | 457.5 ³ | 457.8 ³ | 0.3 | | L | 21,220 | 607 | 2,076 | 7.2 | 460.0/461.1/461.1 ² | 460.0 ³ | 460.9 ³ | 0.9 | | M | 21,905 | 985 | 4,684 | 3.2 | 462.7/463.7/463.3 ² | 462.4 ³ | 463.3 ³ | 0.9 | | N | 23,415 | 836 | 3,483 | 4.3 | 466.8/467.6/465.1 ² | 465.0 ³ | 466.0 ³ | 1.0 | | 0 | 24,088 | 557 | 2,380 | 6.3 | 468.9/469.6/467.8 ² | 467.7 ³ | 468.1 ³ | 0.4 | | Р | 24,597 | 388 | 1,835 | 8.2 | 470.7/471.0/469.3 ² | 469.3 ³ | 470.1 ³ | 0.8 | | Q | 25,613 | 143 | 1,587 | 9.5 | 476.4/476.6/476.6 ² | 476.4 ³ | 476.7 ³ | 0.3 | | R | 26,087 | 192 | 1,993 | 7.5 | 478.2/478.4/478.4 ² | 478.2 ³ | 478.2 ³ | 0.0 | | S | 27,297 | 475 | 2,894 | 5.2 | 479.6/479.6/479.7 ² | 479.9 ³ | 480.6 | 0.6 | | Т | 27,913 | 693 | 4,110 | 3.7 | 481.7/481.7/480.8 ² | 480.9 ³ | 481.8 | 0.8 | | U | 28,440 | 462 | 3,317 | 5.3 | 483.6/483.6/481.4 ² | 481.5 ³ | 481.8 | 0.3 | | V | 28,869 | 699 | 2,712 | 5.5 | 484.3/484.3/482.6 ² | 482.7 ³ | 483.5 | 0.7 | | W | 29,243 | 386 | 1,863 | 8.1 | 485.4/485.4/484.7 ² | 484.8 ³ | 484.8 | 0.0 | | Χ | 29,747 | 158 | 1,431 | 10.5 | 487.5/487.5/486.9 ² | 487.0 ³ | 487.1 | 0.0 | | Υ | 30,763 | 119 | 1,247 | 12.0 | 490.6/490.6/490.1 ² | 490.2 ³ | 490.6 | 0.3 | | Z | 31,898 | 139 | 1,368 | 11.0 | 495.9/495.6/495.5 ² | 495.6 ³ | 495.5 | 0.1 | ¹Feet Above Confluence with Snoqualmie River Note: Reference to Left and Right are Based on Looking Downstream Direction FEDERAL EMERGENCY MANAGEMENT AGENCY KING COUNTY, WA AND INCORPORATED AREAS # **FLOODWAY DATA** **SOUTH FORK SNOQUALMIE RIVER** ²Landward of Left Levee/Riverward of Levees/Landward of Right Levee ³Elevations Computed Without Consideration of Levees | FLOODING SO | DURCE | | FLOODWAY | | | CENT-ANNUAL-
ATER SURFACE | | | |------------------|-----------------------|--------|-----------|-------------|--------------------------------|------------------------------|-------------|----------| | | | WIDTH | SECTION | MEAN | REGULATORY | WITHOUT | WITH | INCREAS | | CROSS SECTION | DISTANCE ¹ | WIDIR | AREA | VELOCITY | REGULATORY | FLOODWAY | FLOODWAY | INCREASI | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | SOUTH FORK | | | | | | | | | | SNOQUALMIE RIVER | | | | | | | | | | AA | 32,358 | 167 | 1,592 | 9.4 | 497.0/498.4/497.4 ² | 497.4 ³ | 498.1 | 0.7 | | AB | 32,737 | 162 | 1,389 | 10.8 | 497.8/498.0/498.8 ² | 498.7 ³ | 499.6 | 0.9 | | AC | 33,205 | 273 | 2,180 | 6.9 | 500.2/502.1/501.0 ² | 502.1 ³ | 502.5 | 0.4 | | AD | 33,741 | 310 | 2,439 | 6.2 | 502.1/503.0/502.7 ² | 503.2 ³ | 503.9 | 0.7 | | AE | 34,406 | 182 | 1,085 | 13.8 | 504.3/504.3/504.9 ² | 504.3 ³ | 504.3 | 0.0 | | AF | 34,784 | 335 | 2,167 | 6.9 | 509.5/509.5/509.2 ² | 509.5 ³ | 509.5 | 0.0 | | AG | 35,191 | 351 | 1,914 | 7.8 | 511.5/511.5/511.4 ² | 511.5 ³ | 511.5 | 0.0 | | AH | 35,682 | 152 | 1,242 | 12.1 | 514.9/514.9/514.9 ² | 514.9 ³ | 514.9 | 0.0 | | Al | 36,189 | 108 | 1,244 | 12.1 | 519.7/519.7/519.6 ² | 519.6 ³ | 519.7 | 0.1 | | AJ | 36,704 | 103 | 1,340 | 11.2 | 527.0/527.0/528.7 ² | 527.0 ³ | 527.0 | 0.0 | | AK | 37,291 | 143 | 1,393 | 10.8 | 531.0/531.0/527.8 ² | 531.0 ³ | 531.0 | 0.0 | | AL | 37,841 | 102 | 1,000 | 15.0 | 535.5/535.5/536.6 ² | 535.5 ³ | 535.4 | 0.2 | | AM | 38,443 | 155 | 1,591 | 9.4 | 542.1/542.1/514.7 ² | 542.1 ³ | 542.6 | 0.5 | | AN | 39,109 | 119 | 1,270 | 11.8 | 550.1 | 550.1 ³ | 550.1 | 0.0 | | AO | 39,654 | 100 | 1,204 | 12.5 | 554.1 | 554.1 ³ | 554.1 | 0.0 | | AP | 40,086 | 128 | 1,685 | 8.9 | 557.4 | 554.1
557.4 | 557.5 | 0.0 | | AQ | 40,576 | 142 | 1,622 | 9.3 | 559.1 | 559.1 | 559.3 | 0.2 | | AR | 41,027 | 182 | 1,397 | 10.7 | 561.3 | 561.3 | 561.4 | 0.1 | | AS | 41,637 | 189 | 2,039 | 7.4 | 565.8 | 565.8 | 565.8 | 0.0 | | AT | 42,231 | 121 | 1,246 | 12.0 | 567.7 | 567.7 | 567.7 | 0.0 | | AU | 43,074 | 404 | 3,147 | 4.8 | 572.5 | 572.5 | 573.1 | 0.6 | | AV | 43,631 | 382 | 2,726 | 5.5 | 573.9 | 573.9 | 574.6 | 0.7 | | AW | 44,390 | 754 | 4,079 | 3.7 | 575.8 | 575.8 | 576.8 | 1.0 | | AX | 44,968 | 561 | 2,869 | 5.2 | 577.2 | 577.2 | 578.1 | 0.9 | | AY | 45,730 | 318 | 2,143 | 7.0 | 580.9 | 580.9 | 581.0 | 0.1 | | AZ | 46,420 | 134 | 1,312 | 11.4 | 583.1 | 583.1 | 583.8 | 0.7 | ¹Feet Above Confluence with Snoqualmie River FEDERAL EMERGENCY MANAGEMENT AGENCY KING COUNTY, WA AND INCORPORATED AREAS # **FLOODWAY DATA** **SOUTH FORK SNOQUALMIE RIVER** TABLE 6 Note: Reference to Left and Right are Based on Looking Downstream Direction ²Landward of Left Levee/Riverward of Levees/Landward of Right Levee ³Elevations Computed Without Consideration of Levees | FLOODING SO | DURCE | | FLOODWAY | | 1- | | AL-CHANCE FLO | OD | |--------------------------------------|----------------------------|-------------------|-----------------------|---------------------|-------------------------|-------------------------|-------------------------|-------------------| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | SOUTH FORK
SNOQUALMIE RIVER
BA | 47,164 | 545 | 3,336 | 4.5 | 587.4 | 587.4 | 588.1 | 0.7 | | BB
BC | 48,308
48,829 | 1350
1293 | 8,269
6,026 | 1.8
2.5 | 593.9
594.3 | 593.9
594.3 | 594.3
594.8 | 0.4
0.5 | | BD
BE
BF | 49,371
49,854
50,445 | 113
133
235 | 923
1,342
1,658 | 16.3
11.2
9.0 | 595.8
601.5
606.0 | 595.8
601.5
606.0 | 595.8
601.9
606.0 | 0.0
0.4
0.0 | | BG
BH | 50,814
51,203 | 239
203 | 1,187
1,898 | 12.6
7.9 | 609.9
614.8 | 609.9
614.8 | 609.9
615.0 | 0.0
0.2 | ¹Feet Above Confluence with Snoqualmie River | FEDERAL EMERGENCY MANAGEMENT AGENCY KING COUNTY, WA | FLOODWAY DATA | |--|-----------------------------| | KING COUNTY, WA | | | AND INCORPORATED AREAS | SOUTH FORK SNOQUALMIE RIVER | | FLOODING SO | URCE | | FLOODWAY | | 1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION | | | | | |----------------|-----------------------|--------|-----------------|------------------|---|---------------------|------------------|----------|--| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | | SOUTH FORK | | | | | | | | | | | THORNTON CREEK | | | | | | | | | | | Α | 247 | 33 | 108 | 2.5 | 57.6 | 57.6 | 57.6 | 0.0 | | | В | 872 | 17 | 33 | 8.1 | 61.1 | 61.1 | 61.1 | 0.0 | | | С | 1,515 | 15 | 30 | 9.0 | 66.7 | 66.7 | 66.7 | 0.0 | | | D | 1,705 | 14 | 53 | 5.1 | 72.3 | 72.3 | 72.3 | 0.0 | | | E | 1,848 | 12 | 29 | 8.5 | 72.5 | 72.5 | 72.5 | 0.0 | | | F | 2,551 | 11 | 28 | 8.9 | 83.1 | 83.1 | 83.1 | 0.0 | | | G | 2,696 | 12 | 33 | 7.5 | 86.6 | 86.6 | 86.6 | 0.0 | | | Н | 3,350 | 18 | 32 | 7.6 | 97.6 | 97.6 | 97.6 | 0.0 | | | I | 3,800 | 16 | 30 | 7.9 | 105.3 | 105.3 | 105.3 | 0.0 | | | J | 4,140 | 28 | 36 | 6.6 | 113.7 | 113.7 | 113.7 | 0.0 | | | K | 4,318 | 5 | 20 | 11.4 | 123.6 | 123.6 | 123.6 | 0.0 | | | L | 4,630 | 25 | 49 | 4.3 | 128.6 | 128.6 | 128.6 | 0.0 | | | M | 5,155 | 45 | 40 | 5.3 | 138.3 | 138.3 | 138.3 | 0.0 | | | N | 5,814 | 10 | 33 | 4.8 | 151.1 | 151.1 | 151.1 | 0.0 | | | 0 | 6,555 | 29 | 30 | 5.3 | 160.1 | 160.1 | 160.1 | 0.0 | | | Р | 7,035 | 13 | 28 | 5.6 | 165.7 | 165.7 | 165.8 | 0.1 | | | Q | 7,520 | 13 | 21 | 7.2 | 173.3 |
173.3 | 173.3 | 0.0 | | | R | 7,788 | 9 | 15 | 9.7 | 186.7 | 186.7 | 186.7 | 0.0 | | | S | 8,035 | 19 | 24 | 6.4 | 195.2 | 195.2 | 195.2 | 0.0 | | | T | 9,359 | 6 | 16 | 9.3 | 225.0 | 225.0 | 225.0 | 0.0 | | | Ü | 9,600 | 49 | 47 | 3.2 | 227.7 | 227.7 | 227.7 | 0.0 | | | V | 9,915 | 10 | 19 | 7.9 | 231.5 | 231.5 | 231.5 | 0.0 | | | W | 10,274 | 17 | 40 | 3.8 | 233.7 | 233.7 | 233.7 | 0.0 | | | X | 10,457 | 12 | 49 | 1.8 | 236.3 | 236.3 | 236.4 | 0.1 | | | Y | 10,557 | 5 | 15 | 6.0 | 236.8 | 236.8 | 236.8 | 0.0 | | | Z | 10,890 | 10 | 16 | 5.5 | 239.8 | 239.8 | 239.8 | 0.0 | | | ĀĀ | 11,295 | 6 | 11 | 8.0 | 245.8 | 245.8 | 245.8 | 0.0 | | ¹Feet Above confluence with Thornton Creek | TA | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | |-----|-------------------------------------|---------------------------| | BE | KING COUNTY, WA | | | E 6 | AND INCORPORATED AREAS | SOUTH FORK THORNTON CREEK | | FLOODING SO | DURCE | _ | FLOODWAY | | 1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION | | | | | |-------------------|-----------------------|--------|-----------------|------------------|---|----------------------|----------------------|----------|--| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY ² | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | | SPRINGBROOK CREEK | | | | | | | | | | | Α | 0 | 160 | 2,174 | 0.8 | 10.0 | 2 | 2 | 2 | | | В | 225 | 500 | 1,596 | 1.0 | 10.1 | 2 | 2 | 2 | | | С | 505 | 524 | 845 | 1.8 | 10.4 | 2 | 2 | 2 | | | D | 635 | 268 | 515 | 2.9 | 10.5 | ² | 2 | 2 | | | E | 1,035 | 459 | 1,115 | 1.2 | 10.9 | 2 | 2 | 2 | | | F | 1,305 | 278 | 503 | 2.6 | 11.1 | 2 | ² | 2 | | | G | 1,640 | 834 | 1,589 | 0.8 | 11.4 | 2 | 2 | 2 | | | Н | 2,000 | 74 | 165 | 7.9 | 11.7 | ² | 2 | 2 | | | I | 2,220 | 60 | 314 | 4.1 | 12.1 | 2 | 2 | 2 | | | J | 2,537 | 40 | 218 | 5.2 | 13.1 | 2 | 2 | 2 | | | K | 2,840 | 76 | 451 | 2.5 | 14.0 | 2 | 2 | 2 | | | L | 3,266 | 67 | 468 | 2.4 | 15.1 | ² | 2 | 2 | | | M | 3,754 | 60 | 396 | 2.8 | 16.2 | 2 | 2 | 2 | | | N | 4,280 | 70 | 440 | 2.5 | 17.4 | 2 | 2 | 2 | | | 0 | 4,669 | 61 | 385 | 2.9 | 17.6 | 2 | 2 | 2 | | | Р | 4,728 | 60 | 583 | 1.9 | 17.6 | 2 | 2 | 2 | | | Q | 4,961 | 64 | 551 | 0.7 | 17.7 | 2 | 2 | 2 | | | R | 5,077 | 39 | 283 | 1.4 | 17.8 | 2 | 2 | 2 | | | S | 5,225 | NA | NA | NA | 17.8 | 2 | 2 | 2 | | | Т | 5,560 | 100 | 46 | 8.7 | 17.9 | 2 | ² | 2 | | | U | 5,564 | 72 | 191 | 2.1 | 17.9 | 2 | 2 | 2 | | | V | 5,620 | 60 | 359 | 3.1 | 17.9 | 2 | ² | 2 | | | W | 5,682 | 59 | 340 | 3.3 | 18.0 | ² | 2 | 2 | | | Χ | 5,777 | 59 | 345 | 3.2 | 18.0 | 2 | 2 | 2 | | | Υ | 5,939 | 59 | 408 | 2.7 | 18.0 | 2 | 2 | 2 | | | Z | 6,039 | 58 | 422 | 2.7 | 18.1 | <u></u> 2 | 2 | 2 | | ¹Feet From Black River Pump Station ² Springbrook Creek flood elevations are controlled by Green River Flood. Base Flood Elevation are derived from 1% chance flood elevations from Green River | FLOODING SO | URCE | | FLOODWAY | | 1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION | | | | |-------------------|-----------------------|--------------------|-----------------|------------------|---|----------------------|----------------------|--------------| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY ³ | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | SPRINGBROOK CREEK | | | | | | | | | | AA | 6,489 | 56 | 413 | 2.7 | 18.4 | 3 | 3 | 3 | | AB | 6,889 | 54 | 384 | 2.8 | 18.8 | 3 | 3 | 3 | | AC | 7,189 | 53 | 506 | 2.1 | 19.0 | 3 | 3 | 3 | | AD | 7,439 | 52 | 387 | 2.6 | 19.1 | 3 | ³ | 3 | | AE | 7,589 | 51 | 335 | 3 | 19.2 | 3 | 3 | 3 | | AF | 8,039 | 56 | 540 | 1.9 | 19.4 | 3 | ³ | 3 | | AG | 8,339 | 59 | 395 | 2.5 | 19.6 | 3 | 3 | 3 | | AH | 8,689 | 63 | 386 | 2.6 | 19.7 | 3 | ³ | 3 | | Al | 8,889 | 65 | 408 | 2.4 | 19.8 | 3 | 3 | 3 | | AJ | 8,989 | 65 | 469 | 2.1 | 19.9 | 3 | 3 | 3 | | AK | 9,089 | 929 ² | 513 | 1.9 | 20.0 | 3 | ³ | 3 | | AL | 9,189 | 617 ² | 495 | 1.8 | 20.1 | <u></u> 3 | ³ | 3 | | AM | 9,491 | 610 ² | 544 | 1.6 | 20.2 | 3 | 3 | 3 | | AN | 9,691 | 572 ² | 446 | 1.9 | 20.3 | 3 | ³ | 3 | | AO | 9,766 | 456 ² | 509 | 1.7 | 20.3 | ³ | ³ | 3 | | AP | 10,092 | 326 ² | 489 | 1.7 | 20.4 | 3 | ³ | 3 | | AQ | 10,213 | 318 ² | 557 | 1.5 | 20.4 | 3 | ³ | 3 | | AR | 10,309 | 2,163 ² | 620 | 1.4 | 20.5 | 3 | ³ | 3 | | AS | 10,435 | 2,256 ² | 597 | 1.4 | 20.5 | ³ | ³ | 3 | | AT | 10,937 | 2,281 ² | 570 | 1.4 | 20.6 | 3 | ³ | 3 | | AU | 11,344 | 2,151 ² | 428 | 1.8 | 20.7 | 3 | ³ | ³ | | AV | 11,882 | 63 | 306 | 2.7 | 21.0 | ³ | 3 | 3 | | AW | 12,370 | 63 | 304 | 2.8 | 22.0 | ³ | ³ | 3 | | AX | 12,661 | 63 | 504 | 2.2 | 22.0 | 3 | 3 | 3 | | AY | 13,061 | 59 | 492 | 2.3 | 22.1 | 3 | ³ | 3 | | AZ | 13,661 | 54 | 449 | 2.5 | 22.4 | 3 | ³ | 3 | ¹Feet From Black River Pump Station ²Cross Section Includes Wetland ³ Springbrook Creek flood elevations are controlled by Green River Flood. Base Flood Elevation are derived from 1% chance flood elevations from Green River | | | | FLOODWAY | | 1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION | | | | |-------------------|-----------------------|--------|-----------------|------------------|---|----------------------|----------------------|----------| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY ² | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | SPRINGBROOK CREEK | | | | | | | | | | ВА | 14,061 | 50 | 358 | 3.1 | 22.6 | 2 | 2 | 2 | | BB | 14,637 | 42 | 369 | 3.0 | 22.7 | 2 | 2 | 2 | | BC | 14,710 | 41 | 343 | 3.3 | 22.8 | 2 | 2 | 2 | | BD | 14,970 | 81 | 385 | 2.9 | 23.1 | 2 | 2 | 2 | | BE | 15,235 | 69 | 468 | 2.3 | 23.5 | 2 | 2 | 2 | | BF | 16,235 | 88 | 514 | 2.1 | 24.4 | 2 | 2 | 2 | | BG | 16,935 | 60 | 299 | 3.5 | 25.0 | 2 | 2 | 2 | | BH | 3.03 ³ | 54 | 477 | 2.6 | 26.0 | 2 | ² | 2 | | BI | 3.17 ³ | 70 | 561 | 1.2 | 26.0 | 2 | ² | 2 | | BJ | 3.49 ³ | 75 | 520 | 1.3 | 26.0 | 2 | ² | 2 | | BK | 3.80 ³ | 88 | 453 | 1.5 | 26.0 | 2 | 2 | 2 | | BL | 3.95 ³ | 93 | 328 | 2 | 26.0 | 2 | ² | 2 | | ВМ | 4.08 ³ | 100 | 733 | 0.9 | 26.0 | 2 | 2 | 2 | | BN | 4.29 ³ | 50 | 316 | 2.1 | 27.0 | 2 | ² | 2 | | ВО | 4.33 ³ | 45 | 739 | 0.9 | 27.1 | 2 | 2 | 2 | | BP | 4.51 ³ | 30 | 303 | 1.7 | 27.7 | 2 | 2 | 2 | | BQ | 4.63 ³ | 47 | 238 | 2.1 | 28.0 | 2 | ² | 2 | | BR | 4.82 ³ | 38 | 218 | 2.3 | 28.5 | 2 | 2 | 2 | | BS | 4.97 ³ | 21 | 141 | 3.5 | 28.7 | 2 | ² | 2 | | ВТ | 5.13 ³ | 28 | 211 | 2.4 | 29.1 | 2 | 2 | 2 | | BU | 5.16 ³ | 31 | 161 | 3.1 | 29.2 | 2 | ² | 2 | | BV | 5.36 ³ | 30 | 202 | 2.5 | 29.5 | ² | 2 | 2 | | BW | 5.53 ³ | 32 | 147 | 3.4 | 29.8 | 2 | ² | 2 | | BX | 5.57 ³ | 34 | 174 | 0.7 | 30.0 | ² | 2 | 2 | | BY | 5.65 ³ | 30 | 187 | 0.6 | 30.6 | 2 | 2 | 2 | | BZ | 5.80 ³ | 28 | 122 | 0.9 | 32.5 | 2 | ² | 2 | ¹Feet From Black River Pump Station ² Springbrook Creek flood elevations are controlled by Green River Flood. Base Flood Elevation are derived from 1% chance flood elevations from Green River $^{^3}$ Miles above mouth for cross section BH to BZ, the distances are obtained from effective FIS report April 19 ,2005 | FLOODING SO | DURCE | FLOODWAY | | | 1-PERCENT-ANNUAL-CHANCE FLOOD
WATER SURFACE ELEVATION | | | | |-------------------------------------|---|--|---|--|--|--|---|--| | CROSS SECTION | DISTANCE ¹ | WIDTH (FEET) | SECTION
AREA
(SQ.FEET) | MEAN VELOCITY (FEET/SEC.) | REGULATORY ² (FEET NAVD) | WITHOUT
FLOODWAY
(FEET NAVD) | WITH FLOODWAY (FEET NAVD) | INCREASE
(FEET) | | SPRINGBROOK CREEK | | | | | | | | | | CA CB CC CD CE CF CG CH CI CJ CK CL | 5.94 ³ 6.07 ³ 6.18 ³ 6.21 ³ 6.36 ³ 6.38 ³ 6.46 ³
6.58 ³ 6.74 ³ 6.85 ³ 6.89 ³ 7.18 ³ | 28
19
46
34
28
45
49
23
41
39
30
38 | 87
59
75
96
60
69
81
92
50
99
130
78 | 1.3
2.0
1.4
1.1
1.8
1.4
1.2
0.8
2
1
1.5
3.8 | 33.6
34.4
35.0
35.1
35.4
35.6
35.8
36.1
37.1
38.0
38.3
40.0 | ² | ² | ² | ¹Feet From Black River Pump Station ² Springbrook Creek flood elevations are controlled by Green River Flood. Base Flood Elevation are derived from 1% chance flood elevations from Green River ³ Miles above mouth for cross section CA to CL, the distances are obtained from effective FIS report April 19 ,2005 | FLOODING SO | DURCE | _ | FLOODWAY | | 1- | | AL-CHANCE FLOO
CE ELEVATION |)D | |--|-------------------------|---|-------------------|-------------------|--------------------------|--------------------------|--------------------------------|-------------------| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) ³ | (FEET NAVD) ⁴ | (FEET NAVD) ⁴ | (FEET) | | SW 23rd STREET
DRAINAGE CHANNEL
CA
CB | 0
420 | 60 ² | 32
183 | 4.5
0.8 | 20.0
20.6 | 16.9
16.9 | 17.8
17.8 | 0.9
0.9 | | CC
CD | 500
550 | 60 ²
60 ² | 169
165 | 0.9
0.9 | 20.7
20.8 | 16.9
16.9 | 17.8
17.8
17.8 | 0.9
0.9 | | CE
CF
CG | 810
896
947 | 60 ²
60 ²
90 ² | 89
293
254 | 1.6
0.5
0.6 | 21.0
21.0
21.0 | 16.9
17.0
17.0 | 17.8
17.8
17.8 | 0.9
0.8
0.8 | | CH
CI | 1,061
1,110 | 53
60 | 153
26 | 0.9
5.5 | 21.0
21.0 | 17.0
17.1 | 17.8
17.8 | 0.8
0.7 | | CK
CL | 1,545
2,075
2,292 | 60
60
40 | 204
184
105 | 0.7
0.8
1.4 | 21.0
21.0
21.0 | 17.1
17.1
17.1 | 17.8
17.8
17.9 | 0.7
0.7
0.8 | | CM
CN | 2,391
2,492 | 40
40 | 248
218 | 0.5
0.5 | 21.0
21.0 | 18.1
18.1 | 18.4
18.4 | 0.3
0.3 | ¹Feet Above Confluence With Springbrook Creek KING COUNTY, WA FEDERAL EMERGENCY MANAGEMENT AGENCY **FLOODWAY DATA** **SW 23RD STREET DRAINAGE CHANNEL** ² Cross Section Includes Wetlands ³The flood elevations are controlled by Green River flood. Base Flood Elevations are derived from 1% chance flood elevations from the Green River ⁴Elevations computed without consideration of the Green River effects | FLOODING SO | DURCE | | FLOODWAY | | 1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION | | | | | |---------------|-----------------------|--------|-----------------|------------------|---|---------------------|------------------|----------|--| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | | SWAMP CREEK | | | | | | | | | | | Α | 960 | 50 | 232 | 3.9 | 20.6 | 19.8 ³ | 19.8 | 0.0 | | | В | 1,400 | 47 | 240 | 3.8 | 20.9 | 20.6 | 20.6 | 0.0 | | | С | 1,870 | 147 | 652 | 1.4 | 25.0 | 25.0 | 26.0 | 1.0 | | | D | 2,300 | 45 | 294 | 3.1 | 25.2 | 25.2 | 26.2 | 1.0 | | | E | 2,491 | 84 | 374 | 2.4 | 26.0 | 26.0 | 26.8 | 0.8 | | | F | 2,791 | 26 | 191 | 4.8 | 26.3 | 26.3 | 26.9 | 0.6 | | | G | 3,271 | 28 | 214 | 4.3 | 27.1 | 27.1 | 28.0 | 0.9 | | | H | 3,860 | 54 | 283 | 3.2 | 28.3 | 28.3 | 29.2 | 0.9 | | | l I | 4,461 | 413 | 1,330 | 0.7 | 28.9 | 28.9 | 29.9 | 1.0 | | | J | 5,151 | 302 | 419 | 2.1 | 30.5 ² | 29.7 | 30.7 | 1.0 | | | K | 5,661 | 530 | 834 | 1.0 | 34.0^{2} | 31.9 | 32.9 | 1.0 | | | L | 6,271 | 286 | 275 | 3.2 | 35.6 ² | 34.6 | 35.5 | 0.9 | | | M | 6,961 | 467 | 865 | 1.0 | 39.7 ² | 38.0 | 39.0 | 1.0 | | | N | 7,561 | 37 | 95 | 9.1 | 43.9 ² | 43.1 | 43.1 | 0.0 | | | 0 | 7,941 | 59 | 223 | 3.9 | 46.3 ² | 46.3 | 47.2 | 0.9 | | | P | 8,141 | 47 | 192 | 4.5 | 47.9 | 47.9 | 48.5 | 0.6 | | | Q | 8,181 | 66 | 186 | 4.7 | 48.3 | 48.3 | 48.6 | 0.3 | | | Ř | 8,931 | 242 | 397 | 2.2 | 53.3 | 53.3 | 53.7 | 0.4 | | | S | 9,631 | 33 | 93 | 9.4 | 56.5 | 56.5 | 56.6 | 0.1 | | | Т | 9,961 | 295 | 351 | 2.5 | 60.6 | 60.6 | 61.5 | 0.9 | | | U | 10,231 | 75 | 143 | 6.1 | 62.7 | 62.7 | 63.2 | 0.5 | | | V | 10,791 | 48 | 172 | 5.1 | 67.9 | 67.9 | 68.9 | 1.0 | | | W | 11,381 | 55 | 144 | 6.0 | 75.0 | 75.0 | 75.0 | 0.0 | | | X | 12,031 | 28 | 176 | 4.9 | 78.9 | 78.9 | 79.8 | 0.9 | | | Υ | 12,791 | 57 | 169 | 5.1 | 84.0 | 84.0 | 84.3 | 0.3 | | | | | | | | | | | | | ¹Feet Above Mouth FEDERAL EMERGENCY MANAGEMENT AGENCY KING COUNTY, WA AND INCORPORATED AREAS **FLOODWAY DATA** **SWAMP CREEK** ABLE ²Elevation Computed for Flow Confined to Main Channel Between Sections I and N $^{^3\}mbox{Elevations}$ Computed Without Consideration of Influence from Sammamish River | FLOODING SO | OURCE | | FLOODWAY | | 1-1 | - | AL-CHANCE FLOO
ACE ELEVATION | DD | |----------------|-----------------------|--------|-----------------|------------------|-------------|----------------------------------|---------------------------------|----------| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY ² | WITH
FLOODWAY ² | INCREASE | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | THORNTON CREEK | | | | | | | | | | Α | 327 | 22 | 76 | 5.1 | 19.1 | 19.1 | 19.1 | 0.0 | | В | 860 | 31 | 109 | 3.6 | 23.6 | 23.6 | 23.7 | 0.1 | | С | 1,046 | 13 | 63 | 5.3 | 24.1 | 24.1 | 24.2 | 0.1 | | D | 1,295 | 43 | 158 | 2.1 | 26.3 | 26.3 | 26.5 | 0.2 | | Е | 1,410 | 46 | 167 | 2.0 | 26.4 | 26.4 | 26.6 | 0.2 | | F | 1,745 | 24 | 186 | 1.8 | 34.6 | 34.6 | 34.6 | 0.0 | | G | 1,960 | 28 | 86 | 1.8 | 34.6 | 34.6 | 34.6 | 0.0 | | Н | 2,090 | 17 | 143 | 2.3 | 36.3 | 36.3 | 36.3 | 0.0 | | I | 2,460 | 17 | 118 | 2.8 | 36.3 | 36.3 | 36.3 | 0.0 | | J | 2,778 | 43 | 172 | 1.8 | 36.4 | 36.4 | 36.6 | 0.2 | | K | 2,860 | 41 | 159 | 2.0 | 36.4 | 36.4 | 36.6 | 0.2 | | L | 3,395 | 18 | 67 | 4.7 | 37.3 | 37.3 | 37.4 | 0.1 | | M | 3,850 | 15 | 73 | 4.2 | 38.6 | 38.6 | 38.8 | 0.2 | | N | 4,170 | 34 | 99 | 2.9 | 39.1 | 39.1 | 39.4 | 0.3 | | 0 | 4,990 | 21 | 48 | 6.0 | 41.3 | 41.3 | 41.3 | 0.0 | | Р | 5,275 | 16 | 44 | 6.5 | 43.5 | 43.5 | 43.5 | 0.0 | | Q | 5,488 | 22 | 72 | 4.1 | 44.5 | 44.5 | 45.4 | 0.9 | | R | 5,606 | 18 | 73 | 3.6 | 45.3 | 45.3 | 46.1 | 0.8 | | S | 5,888 | 28 | 82 | 3.2 | 46.7 | 46.7 | 47.2 | 0.5 | | T | 6,046 | 20 | 68 | 3.8 | 47.2 | 47.2 | 47.6 | 0.4 | | U | 6,460 | 16 | 68 | 3.7 | 47.9 | 47.9 | 48.2 | 0.3 | | V | 6,570 | 63 | 404 | 0.6 | 50.9 | 50.9 | 50.9 | 0.0 | | W | 6,800 | 35 | 178 | 3.3 | 50.9 | 50.9 | 50.9 | 0.0 | | X | 7,155 | 31 | 143 | 4.1 | 53.3 | 53.3 | 53.5 | 0.2 | ¹Feet Above Mouth ²Elevations Computed Without Consideration of Backwater Effects From Lake Washington | FLOODING SC | DURCE | | FLOODWAY | | 1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION | | | | | |----------------|-----------------------|--------|-----------------|------------------|---|---------------------|------------------|----------|--| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | | TIBBETTS CREEK | | | | | | | | | | | Α | 0.15 | N/A | N/A | N/A | 36.1 | 35.2 ² | N/A | N/A | | | В | 0.29 | 23 | 88 | 5.4 | 36.2 | 36.2 | 37.2 | 1.0 | | | С | 0.49 | 39 | 122 | 3.5 | 41.7 | 41.7 | 41.7 | 0.0 | | | D | 0.60 | 36 | 99 | 4.3 | 42.5 | 42.5 | 42.5 | 0.0 | | | E | 0.73 | 93 | 164 | 2.6 | 50.2 | 50.2 | 51.7 | 0.5 | | | F | 0.86 | 29 | 99 | 4.3 | 54.7 | 54.7 | 55.3 | 0.6 | | | G | 0.97 | 19 | 79 | 5.4 | 57.2 | 57.2 | 57.4 | 0.2 | | | Н | 1.07 | 19 | 61 | 7.0 | 60.2 | 60.2 | 60.3 | 0.1 | | | I | 1.11 | 22 | 82 | 5.2 | 61.4 | 61.4 | 62.0 | 0.6 | | | J | 1.17 | 39 | 135 | 3.1 | 67.4 | 67.4 | 67.6 | 0.2 | | | К | 1.27 | 11 | 39 | 10.9 | 72.6 | 72.6 | 72.6 | 0.0 | | | L | 1.34 | 27 | 174 | 1.9 | 81.3 | 81.3 | 81.3 | 0.0 | | | M | 1.42 | 36 | 155 | 2.1 | 81.4 | 81.4 | 81.5 | 0.1 | | | N | 1.44 | 17 | 88 | 3.7 | 81.6 | 81.6 | 81.7 | 0.1 | | | 0 | 1.55 | 30 | 46 | 7.1 | 88.8 | 88.8 | 88.8 | 0.0 | | | Р | 1.66 | 85 | 91 | 3.6 | 98.9 | 98.9 | 98.9 | 0.0 | | | Q | 1.74 | 24 | 6 | 7.1 | 106.8 | 106.8 | 107.2 | 0.4 | | | R | 1.77 | 19 | 77 | 4.2 | 114.3 | 114.3 | 114.5 | 0.2 | | | S | 1.80 | 13 | 65 | 5.0 | 116.8 | 116.8 | 117.4 | 0.6 | | | Т | 1.83 | 39 | 201 | 1.6 | 117.1 | 117.1 | 118.1 | 1.0 | | | U | 1.89 | 11 | 30 | 10.8 | 121.2 | 121.2 | 121.5 | 0.3 | | | V | 1.94 | 64 | 51 | 6.4 | 128.0 | 128.0 | 128.0 | 0.0 | | | W | 1.97 | 12 | 32 | 10.1 | 130.6 | 130.6 | 130.8 | 0.2 | | | X | 2.03 | 13 | 60 | 5.4 | 137.8 | 137.8 | 138.8 | 1.0 | | | Υ | 2.09 | 11 | 36 | 8.0 | 141.0 | 141.0 | 141.7 | 0.7 | | | Z | 2.14 | 15 | 39 | 7.3 | 149.3 | 149.3 | 150.0 | 0.7 | | | | | | | | | | | | | ¹Miles Above Mouth at Lake Sammamish ²Elevation Computed Without Consideration Of Backwater From Sammamish Lake | FLOODING SC | OURCE | | FLOODWAY | | 1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION | | | | |--|--|--|--|--|--
--|--|--| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | TIBBETTS CREEK | | | | | | | | | | AA
AB
AC
AD
AE
AF
AG
AH
AJ
AJ | 2.18
2.24
2.27
2.30
2,32
2.36
2.42
2.46
2.50
2.53 | 16
8
7
14
13
34
10
17
16
16 | 41
22
24
50
25
37
26
28
41
27 | 7.0
9.4
8.6
4.1
8.0
5.5
7.9
7.3
5.0
7.5 | 153.8
164.1
170.1
172.7
177.4
186.6
193.0
200.9
203.6
209.1 | 153.8
164.1
170.1
172.7
177.4
186.6
193.0
200.9
203.6
209.1 | 154.2
164.5
171.0
173.5
177.4
186.6
193.1
200.9
204.0
209.2 | 0.4
0.4
0.9
0.8
0.0
0.0
0.1
0.0
0.4
0.1 | ¹Miles Above Mouth | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | |-------------------------------------|----------------| | KING COUNTY, WA | I LOODWAT DATA | | KING COUNTT, WA | TIBBETTS CREEK | | AND INCORPORATED AREAS | IIBBEITS CREEK | | FLOODING S | OURCE | | FLOODWAY | | 1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION | | | | |---------------|-----------------------|--------|-----------------|------------------|---|---------------------|--------------------|----------| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | TOLT RIVER | | | | | | | | | | A^2 | | | | | | | | | | В | 2,350 | 2,170 | 8,231 | 2.7 | 76.9 ³ | 74.3 ⁵ | 75.0 ⁵ | 0.7 | | С | 2,880 | 1,500 | 6,797 | 3.2 | 80.2 | 80.2 | 80.3 | 0.1 | | D | 3,235 | 1,300 | 6,219 | 3.5 | 80.6 | 80.6 | 81.3 | 0.7 | | E | 3,740 | 1,200 | 5,424 | 4.1 | 81.7 | 81.7 | 82.6 | 0.9 | | F | 4,345 | 1,300 | 3,833 | 5.7 | 84.8 | 84.8 | 85.5 | 0.7 | | G | 4,775 | 778 | 3,376 | 6.5 | 87.7 | 87.7 | 88.7 | 1.0 | | Н | 5,390 | 570 | 2,697 | 8.2 | 92.5 | 92.5 | 93.5 | 1.0 | | I | 5,835 | 492 | 4,137 | 5.3 | 97.0/97.0/96.0 ⁴ | 97.0 ⁶ | 97.2 ⁶ | 0.2 | | J | 6,355 | 1,000 | 6,880 | 3.2 | 99.2/99.5/98.2 ⁴ | 99.0 ⁶ | 99.4 ⁶ | 0.4 | | K | 7,030 | 642 | 3,226 | 6.8 | 101.4/101.7/101.6 ⁴ | 101.2 ⁶ | 101.6 ⁶ | 0.4 | | L | 7,690 | 650 | 3,324 | 6.6 | 104.4/106.0/105.9 ⁴ | 104.3 ⁶ | 105.1 ⁶ | 0.8 | | M | 8,300 | 810 | 3,099 | 7.1 | 107.8/108.6/108.2 ⁴ | 107.3 ⁶ | 108.2 ⁶ | 0.9 | | N | 9,055 | 900 | 4,302 | 5.1 | 112.0/113.9/112.5 ⁴ | 111.5 ⁶ | 112.3 ⁶ | 0.8 | | 0 | 9,735 | 856 | 4,365 | 5.0 | 115.3/116.4/116.1 ⁴ | 115.2 ⁶ | 116.0 ⁶ | 0.8 | | Р | 10,595 | 1,272 | 4,853 | 4.5 | 119.9/119.8/119.8 ⁴ | 119.9 ⁶ | 120.8 ⁶ | 0.9 | | Q | 11,185 | 902 | 4,355 | 5.1 | 123.1 | 123.1 | 123.9 | 0.8 | | R | 12,365 | 707 | 3,515 | 6.3 | 129.8 | 129.8 | 130.4 | 0.6 | | S | 13,160 | 693 | 3,321 | 6.6 | 136.3 | 136.3 | 136.7 | 0.4 | | Т | 13,920 | 1,068 | 4,487 | 4.9 | 141.8 | 141.8 | 142.7 | 0.9 | | U | 14,860 | 287 | 2,059 | 10.7 | 148.9 | 148.9 | 149.6 | 0.7 | | V | 15,385 | 1,100 | 5,144 | 4.3 | 153.5 | 153.5 | 154.5 | 1.0 | | W | 16,255 | 724 | 3,447 | 6.4 | 157.5 | 157.5 | 158.5 | 1.0 | | X | 16,855 | 826 | 4,011 | 5.5 | 161.4 | 161.4 | 162.4 | 1.0 | | Y | 17,625 | 855 | 5,149 | 4.3 | 165.2 | 165.2 | 165.3 | 0.1 | | Z | 18,235 | 279 | 1,601 | 13.7 | 170.8 | 170.8 | 171.4 | 0.6 | | | | | | | | | | | ¹Feet Above Mouth FEDERAL EMERGENCY MANAGEMENT AGENCY KING COUNTY, WA AND INCORPORATED AREAS **FLOODWAY DATA** **TOLT RIVER** ²Cross Section Located Within Snoqualmie River Floodway ³Backwater from Snoqualmie River ⁴Landward of Left Levee/Riverward of Levees/Landward of Right Levee ⁵Elevations Calculated Without Consideration of Backwater from Snoqualmie River ⁶Elevations Computed Without Consideration of Levees | FLOODING SO | OURCE | | FLOODWAY | | 1- | | AL-CHANCE FLO | OD | |--|--|---|---|--|--|--|---|--| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | TOLT RIVER | | | | | | | | | | AA AB AC AD AE AF AG AH AI AJ AK AL AM AN AO AP AQ AR AS AT AU | 19,045
19,690
20,340
20,795
21,555
22,135
22,935
23,920
24,280
24,730
25,515
26,265
26,755
27,255
27,795
28,610
29,355
30,150
30,900
31,365
31,770 | 1,102
750
632
435
352
752
805
790
436
434
604
380
363
334
371
374
379
230
190
235
377 | 5,668 3,606 3,508 2,553 2,628 4,552 3,276 4,929 2,806 2,984 3,236 2,722 3,138 2,245 3,194 2,647 2,434 2,046 1,747 2,050 3,878 | 3.9
6.1
6.3
8.6
8.4
4.8
6.7
4.5
7.8
7.4
6.8
8.1
7.0
9.8
6.9
8.3
9.0
10.8
12.6
10.7
5.7 | 177.8
180.9
184.4
187.9
193.2
196.1
200.1
205.4
206.9
210.1
215.3
221.3
223.9
226.8
230.1
233.8
238.5
244.5
251.7
262.4 | 177.8
180.9
184.4
187.9
193.2
196.1
200.1
205.4
206.9
210.1
215.3
221.3
223.9
226.8
230.1
233.8
238.5
244.5
251.7
262.4 | 178.8
181.2
185.3
188.2
193.7
197.0
200.9
206.4
207.8
211.0
216.3
221.3
224.3
227.0
231.0
234.8
239.4
245.5
252.4
258.0
263.3 | 1.0
0.3
0.9
0.3
0.5
0.9
0.8
1.0
0.9
1.0
0.0
0.4
0.2
0.9
1.0
0.9
1.0
0.9 | | | | | | | | | | | ¹Feet Above Mouth | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | |-------------------------------------|----------------| | KING COUNTY, WA | I LOODWAT DATA | | KING COUNTT, WA | TOLT RIVER | | AND INCORPORATED AREAS | IOLI RIVER | | FLOODING SO | DURCE | | FLOODWAY | | 1- | | AL-CHANCE FLO | | | |---|---|--|---|---|---|---|---|---|--| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | UPPER NORTH
OVERFLOW (Middle
Fork Snoqualmie River) | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | | A
B
C
D
E
F
G | 300
475
2,000
2,600
3,050
3,200
3,900 | 161
161
123
166
188
187
95 | 783
819
319
552
301
334
379 | 2.7
2.6
6.7
3.9
7.2
6.4
5.7 | 444.9
445.0
449.7
452.9
455.6
457.2
460.2 | 444.9
445.0
449.7
452.9
455.6
457.2
460.2 | 445.6
445.8
450.3
453.2
455.9
457.4
460.6 | 0.7
0.8
0.6
0.3
0.3
0.2
0.4 | | ¹Feet Above Convergence with Upper South Overflow FEDERAL EMERGENCY MANAGEMENT AGENCY KING COUNTY, WA AND INCORPORATED AREAS FLOODWAY DATA UPPER NORTH OVERFLOW (MIDDLE FORK SNOQUALMIE RIVER) | FLOODING SO | DURCE | | FLOODWAY | | 1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION | | | | |---|---|--------------------------------|-----------------------------------|----------------------------------|---|---|---|---------------------------------| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | UPPER SOUTH
OVERFLOW (Middle
Fork Snoqualmie River) | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | A
B
C
D
E | 2,200
2,900
3,900
4,700
5,650 | 111
175
84
127
203 | 398
1,025
327
611
379 |
10.8
4.2
6.6
3.5
5.7 | 440.4
444.9
448.6
454.3
459.3 | 440.4
444.9
448.6
454.3
459.3 | 440.6
445.6
448.8
454.8
459.3 | 0.2
0.7
0.2
0.5
0.0 | ¹Feet Above Confluence with South Fork Snoqualmie River | т/ | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | |----|-------------------------------------|--| | B | KING COUNTY, WA | TEOODIIAI DAIA | | Fi | MINO COCITIT, WA | UPPER SOUTH OVERFLOW (MIDDLE FORK SNOQUALMIE RIVER) | | 6 | AND INCORPORATED AREAS | OFFER 300111 OVERFLOW (MIDDLE FORK SNOQUALMIE RIVER) | | FLOODING SO | DURCE | | FLOODWAY | | 1-PERCENT-ANNUAL-CHANCE FLOOD
WATER SURFACE ELEVATION | | | | |--------------------------|-----------------------|--------|-----------------|------------------|--|---------------------|------------------|----------| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | West Tributary of Kelsey | | | | | | | | | | Creek | | | | | | | | | | Α | 0 | 33 | 57 | 4.7 | 33.0 | 33.0 | 33.0 | 0.0 | | В | 922 | 50 | 161 | 1.7 | 34.9 | 34.9 | 35.0 | 0.1 | | С | 1,422 | 109 | 150 | 1.8 | 35.7 | 35.7 | 36.0 | 0.3 | | D | 2,185 | 80 | 177 | 1.5 | 37.1 | 37.1 | 37.9 | 0.9 | | E | 2,220 | 85 | 188 | 1.4 | 37.2 | 37.2 | 38.2 | 1.0 | | F | 2,315 | 138 | 121 | 2.2 | 38.2 | 38.2 | 38.8 | 0.6 | | G | 2,750 | 69 | 127 | 2.1 | 39.0 | 39.0 | 40.0 | 1.0 | | Н | 3,070 | 106 | 206 | 1.3 | 42.1 | 42.1 | 42.9 | 0.8 | | 1 | 3,480 | 93 | 362 | 0.7 | 42.2 | 42.2 | 43.1 | 0.9 | | J | 3,510 | 79 | 121 | 2.2 | 43.7 | 43.7 | 44.3 | 0.7 | | K | 3,855 | 100 | 75 | 3.6 | 44.5 | 44.5 | 45.1 | 0.6 | | L | 4,830 | 14 | 35 | 7.6 | 52.8 | 52.8 | 53.0 | 0.1 | | $M-X^2$ | ¹Feet Above Confluence With Kelsey Creek ² Floodway not computed | FLOODING SO | OURCE | | FLOODWAY | | 1-1 | | AL-CHANCE FLOO
CE ELEVATION | OD | |---------------------|--|--|--|--|--|--|--|--| | CROSS SECTION | DISTANCE ¹ | WIDTH ² | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT | WITH | INCREASE | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | WALKER CREEK | | | | | | | | | | A B C D E F G H I J | 290
510
710
920
1,100
1,160
1,200
1,410
1,600
1,720 | 132
134
254
35
34
7
20
20
20
15 | 217
482
809
98
106
35
97
49
37
50 | 5.0
2.2
1.3
4.7
4.3
9.0
3.2
5.8
7.7
5.7 | 14.5
15.7
16.1
16.4
17.7
19.6
19.8
20.6
25.4
27.2 | 14.5
15.7
16.1
16.4
17.7
19.6
19.8
20.6
25.4
27.2 | 14.9
16.6
16.9
17.1
18.2
20.6
20.8
21.5
25.5
28.1 | 0.4
0.9
0.8
0.7
0.5
1.0
1.0
0.9
0.1
0.9 | ¹Feet Above Mouth FEDERAL EMERGENCY MANAGEMENT AGENCY KING COUNTY, WA AND INCORPORATED AREAS **FLOODWAY DATA** **WALKER CREEK** ²Because of Map Scale Limitations, All Floodway Widths Less Than 30 Feet Are Shown As 30 Feet | FLOODING SO | DURCE | | FLOODWAY | | 1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION | | | | |---------------------------------------|-------------------------|----------------|-----------------|-------------------|---|-------------------------|-------------------------|-------------------| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | WEST FORK
ISSAQUAH CREEK
A
B | 130
230 | 21
10 | 74
45 | 7.5
12.4 | 234.7
238.2 | 234.7
238.2 | 235.7
238.2 | 1.0
0.0 | | C | 404 | 24 | 181 | 3.0 | 243.8 | 243.8 | 243.8 | 0.0 | | D | 1,304 | 35 | 69 | 8.0 | 259.2 | 259.2 | 259.3 | 0.1 | | E | 2,204 | 22 | 59 | 9.3 | 276.8 | 276.8 | 276.8 | 0.0 | | F | 3,384 | 24 | 59 | 8.9 | 308.6 | 308.6 | 308.6 | 0.0 | | G
H | 4,214
4,394
4,508 | 30
22
39 | 70
76
214 | 7.6
7.0
2.5 | 316.8
318.5
321.9 | 316.8
318.5
321.9 | 316.9
318.7
322.8 | 0.1
0.2
0.9 | | J
K | 4,708
4,708
4,917 | 88
156 | 468
703 | 1.1
0.8 | 321.9
322.0 | 321.9
322.0 | 322.9
323.0 | 1.0
1.0 | | L | 5,267 | 167 | 467 | 1.1 | 322.0 | 322.0 | 323.0 | 1.0 | | M | 5,570 | 139 | 278 | 1.2 | 322.2 | 322.2 | 323.2 | 1.0 | | N | 6,570 | 26 | 48 | 6.9 | 323.8 | 323.8 | 323.8 | 0.0 | | O | 7,740 | 27 | 108 | 1.9 | 326.2 | 326.2 | 327.0 | 0.8 | | P | 7,966 | 26 | 93 | 2.1 | 327.5 | 327.5 | 328.4 | 0.9 | | Q | 8,346 | 26 | 104 | 1.9 | 328.2 | 328.2 | 328.8 | 0.6 | | R | 8,774 | 28 | 115 | 1.7 | 328.6 | 328.6 | 329.3 | 0.7 | | S | 9,324 | 64 | 165 | 1.2 | 328.7 | 328.7 | 329.5 | 0.8 | | U | 9,796 | 176 | 422 | 0.5 | 328.7 | 328.7 | 329.7 | 1.0 | | V | 10,521 | 119 | 139 | 1.4 | 328.7 | 328.7 | 329.7 | 1.0 | | w | 10,806 | 136 | 541 | 0.4 | 328.7 | 328.7 | 329.7 | 1.0 | | | 11,456 | 62 | 204 | 1.0 | 328.7 | 328.7 | 329.7 | 1.0 | ¹Feet Above Mouth FEDERAL EMERGENCY MANAGEMENT AGENCY KING COUNTY, WA AND INCORPORATED AREAS FLOODWAY DATA WEST FORK ISSAQUAH CREEK | FLOODING SO | OURCE | | FLOODWAY | | 1- | | AL-CHANCE FLO | OD | |--|--|--|--|--|--|--|--|---| | CROSS SECTION | DISTANCE ¹ | WIDTH | SECTION
AREA | MEAN
VELOCITY | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | | (FEET) | (SQ.FEET) | (FEET/SEC.) | (FEET NAVD) | (FEET NAVD) | (FEET NAVD) | (FEET) | | WHITE RIVER | | | | | | | | | | A - D ² E F G H I J K L M N O P | 6.47
6.69
6.84
7.04
7.27
7.43
7.51
7.63
7.79
8.01
8.19
8.59 | 448
380
329
295
189
215
223
242
314
334
240
300 | 2,831
1,498
1,444
1,327
1,258
1,400
1,276
1,768
1,937
1,938
1,274
2,298 | 6.5
12.3
12.7
13.9
14.6
13.1
14.4
10.4
9.5
9.5
14.4
8.0 | 93.6
96.3
102.5
109.6
116.2
121.8
124.0
128.6
132.1
138.0
144.7
159.1 | 93.6
96.3
102.5
109.6
116.2
121.8
124.0
128.6
132.1
138.0
144.7
159.1 | 93.6
96.3
102.5
109.6
116.2
121.8
124.0
128.6
132.1
138.0
145.1
159.5 | 0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.4
0.4 | | | | | | | | | | | ¹Miles Above Mouth FEDERAL EMERGENCY MANAGEMENT AGENCY KING COUNTY, WA AND INCORPORATED AREAS **FLOODWAY DATA** WHITE RIVER ²Floodway Not Applicable Figure 1. Floodway Schematic # 5.0 <u>INSURANCE APPLICATION</u> For flood insurance rating purposes, flood insurance zone designations are assigned to a community based on the results of the engineering analyses. These zones are as follows: #### Zone A Zone A is the flood insurance rate zone that corresponds to the 1-percent-annual-chance floodplains that are determined in the FIS report by approximate methods. Because detailed hydraulic analyses are not performed for such areas, no base (1-percent-annual-chance) flood elevations (BFEs) or depths are shown within this zone. ### Zone AE Zone AE is the flood insurance rate zone that corresponds to the 1-percent-annual-chance floodplains that are determined in the FIS report by detailed methods. Whole-foot BFEs derived from the detailed hydraulic analyses are shown at selected intervals within this zone. ### Zone AH Zone AH is the flood insurance rate zone that corresponds to areas of 1-percent-annual-chance shallow flooding (usually areas of ponding) where average depths are between 1 and 3 feet. Whole-foot BFEs derived from the detailed hydraulic analyses are shown at selected intervals within this zone. #### Zone AO Zone AO is the flood insurance rate zone that corresponds to areas of 1-percent-annual-chance shallow flooding (usually sheet flow on sloping terrain) where average depths are between 1 and 3 feet. Average whole-foot depths derived from the detailed hydraulic analyses are shown within this zone. #### Zone VE Zone VE is the flood insurance rate zone that corresponds to the
1-percentannual-chance coastal floodplains that have additional hazards associated with storm waves. Whole-foot BFEs derived from the detailed hydraulic analyses are shown at selected intervals within this zone. ### Zone X Zone X is the flood insurance rate zone that corresponds to areas outside the 0.2-percent-annual-chance floodplain, areas within the 0.2-percent-annual-chance floodplain, areas of 1-percent-annual-chance flooding where average depths are less than 1 foot, areas of 1-percent-annual-chance flooding where the contributing drainage area is less than 1 square mile (sq. mi.), and areas protected from the base flood by levees. No BFEs or depths are shown within this zone. #### Zone D Zone D is the flood insurance rate zone that corresponds to unstudied areas where flood hazards are undetermined, but possible. ## 6.0 FLOOD INSURANCE RATE MAP The FIRM is designed for flood insurance and floodplain management applications. For flood insurance applications, the map designates flood insurance rate zones as described in Section 5.0 and, in the 1-percent-annual-chance floodplains that were studied be detailed methods, shows selected whole-foot BFEs or average depths. Insurance agents use zones and BFEs in conjunction with information on structures and their contents to assign premium rates for flood insurance policies. For flood management applications, the map shows by tints, screens, and symbols, the 1- and 0.2-percent-annual-chance floodplains, floodways, and the locations of selected cross sections used in the hydraulic analyses and floodway computations. The countywide DFIRM presents flooding information for the entire geographic area of King County. Previously, DFIRMs were prepared for each incorporated community and the unincorporated areas of the County identified as flood-prone. This countywide DFIRM also includes flood-hazard information that was presented separately on Flood Boundary and Floodway Maps (FBFMs), where applicable. Historical data relating to the maps prepared for each community are presented in Table 7, "Community Map History." | COMMUNITY NAME | INITIAL IDENTIFICATION | FLOOD HAZARD
BOUNDARY MAP
REVISION DATE(S) | FLOOD INSURANCE
RATE MAP
EFFECTIVE DATE | FLOOD INSURANCE
RATE MAP
REVISION DATE(S) | |-------------------------------------|------------------------|--|---|---| | Algona, City of 1 | NA | NA | NA | NA | | Auburn, City of | May 24, 1974 | September 19, 1975 | June 1, 1981 | | | | | February 18, 1977 | | | | Beaux Arts Village, Town of 1 | NA | NA | NA | NA | | Bellevue, City of | August 2, 1974 | August 13, 1976 | December 1, 1978 | February 23, 1982 | | Black Diamond, Town of | July 25, 1975 | October 30, 1979 | October 30, 1979 | | | Bothell, City of | May 24, 1974 | November 12, 1976 | June 1, 1982 | March 2, 1994 | | Burien, City of | | | April 19, 2005 | | | Carnation, City of | May 31, 1974 | March 5, 1976 | March 4, 1980 | | | Clyde Hill, Town of ¹ | NA | NA | NA | NA | | Covington, City of | | | | | | Des Moines, City of | June 28, 1974 | January 2, 1976 | May 15, 1980 | November 15, 1985 | | Duvall, Town of | August 20, 1976 | | June 4, 1980 | | | Enumclaw, City of | September 29, 1989 | | September 29, 1989 | | | Federal Way, City of | | | | | | Hunts Point, Town of 1 | NA | NA | NA | NA | | Issaquah, City of | February 8, 1974 | February 25, 1977 | May 1, 1980 | | | Kent, City of | June 7, 1974 | April 22, 1977 | April 1, 1981 | | | Kenmore, City of | | | | | | King Unincorp Areas | January 17, 1975 | | September 29, 1978 | | | Kirkland, City of | June 28, 1974 | September 12, 1975 | June 15, 1981 | | | Lake Forest Park, City of | June 28, 1974 | February 27, 1976 | February 15, 1980 | | | Maple Valley, City of | | | | | | Medina, City of ¹ | NA | NA | NA | NA | | Mercer Island, City of ¹ | NA | NA | NA | NA | | Muckleshoot Indian Tribe | NA | NA | NA | NA | | Newcastle, City of | | | | | | Normandy Park, City of | June 28, 1974 | October 31, 1975 | November 2, 1977 | August 5, 1980 | | North Bend, City of | May 17, 1974 | May 7, 1976 | August 1, 1984 | | | Pacific, City of | June 28, 1974 | December 26, 1975 | December 2, 1980 | | | Redmond, City of | March 22, 1974 | July 9, 1976 | February 1, 1979 | January 19, 1982 | | Renton, City of | June 7, 1974 | November 7, 1975 | May 5, 1981 | | | Sammamish, City of | | | | | | SeaTac, City of | | | April 19, 2005 | | | Seattle, City of | November 22, 1974 | July 19, 1977 | July 19, 1977 | | | Shoreline, City of | | | | | | Skykomish, Town of | February 14, 1975 | | July 2, 1981 | | | Snoqualmie, City of | December 21, 1973 | | July 5, 1984 | | | Tukwila, City of | May 24, 1974 | September 13, 1977 | August 3, 1981 | | | Woodinville, City of | | | May 16, 1995 | | | Yarrow Point, Town of 1 | NA | NA | NA | NA | FEDERAL EMERGENCY MANAGEMENT AGENCY KING COUNTY, WA AND INCORPORATED AREAS **COMMUNITY MAP HISTORY** ## 7.0 OTHER STUDIES Due to its more detailed hydraulic analyses, this Flood Insurance Study supersedes all previous Flood Insurance Studies/Flood Insurance Rate Maps covering King County and the incorporated areas (References 1-18, 90-92). The Town of Milton has individual effective Flood Insurance Studies (Reference 93). ## 8.0 LOCATION OF DATA Information concerning the pertinent data used in the preparation of this study can be obtained by contacting Federal Insurance and Mitigation Division, FEMA Region X, Federal Regional Center, 130 228th Street Southwest, Bothell, Washington 98021-8627 ## 9.0 BIBLIOGRAPHY AND REFERENCES - 1. U.S. Department of Housing and Urban Development, Federal Insurance Administration, <u>Flood Insurance Study</u>, <u>King County</u>, <u>Washington</u>, <u>(Unincorporated Areas)</u>, March 1978. - 2. Federal Emergency Management Agency, Federal Insurance Administration, Flood Insurance Study, City of Auburn, Washington, December 1980. - 3. Federal Emergency Management Agency, Federal Insurance Administration, Flood Insurance Study, City of Bellevue, Washington, February 23, 1982. - 4. Federal Emergency Management Agency, Federal Insurance Administration, Flood Insurance Study, Town of Carnation, Washington, September 1979. - 5. Federal Emergency Management Agency, Federal Insurance Administration, Flood Insurance Study, City of Des Moines, Washington, November 15, 1985. - 6. Federal Emergency Management Agency, Federal Insurance Administration, Flood Insurance Study, Town of Duvall, Washington, December 1979. - 7. Federal Emergency Management Agency, Federal Insurance Administration, Flood Insurance Study, City of Issaquah, Washington, November 1979. - 8. Federal Emergency Management Agency, Federal Insurance Administration, Flood Insurance Study, City of Kent, Washington, October 1980. - 9. Federal Emergency Management Agency, Federal Insurance Administration, Flood Insurance Study, City of Kirkland, Washington, December 15, 1980. - 10. Federal Emergency Management Agency, Federal Insurance Administration, Flood Insurance Study, City of Lake Forest Park, Washington, August 1979. - 11. Federal Emergency Management Agency, Federal Insurance Administration, Flood Insurance Study, City of Normandy Park, Washington, August 1980. - 12. Federal Emergency Management Agency, Federal Insurance Administration, Flood Insurance Study, City of North Bend, Washington, February 1, 1984. - 13. Federal Emergency Management Agency, Federal Insurance Administration, Flood Insurance Study, City of Pacific, Washington, June 1980. - 14. Federal Emergency Management Agency, Federal Insurance Administration, Flood Insurance Study, City of Redmond, Washington, January 1982. - 15. Federal Emergency Management Agency, Federal Insurance Administration, Flood Insurance Study, City of Renton, Washington, November 1980. - 16. Federal Emergency Management Agency, Federal Insurance Administration, Flood Insurance Study, Town of Skykomish, Washington, January 2, 1981. - 17. Federal Emergency Management Agency, Federal Insurance Administration, Flood Insurance Study, City of Snoqualmie, Washington, January 5, 1984. - 18. Federal Emergency Management Agency, Federal Insurance Administration, Flood Insurance Study, City of Tukwila, Washington, February 3, 1981. - 19. Puget Sound Council of Governments, "Puget Sound Trends No. 5 (Revised)," July 1986. - 20. U.S. Department of Commerce, Bureau of the Census, <u>1980 Census of Population</u>, Number of Inhabitants, Washington. - 21. U.S. Department of Interior, Geological Survey, <u>Magnitude and Frequency in Washington</u>, Open-File Report 74-336 by J.E. Cummans, M.R. Collings, and E.G. Nassar, Tacoma, Washington, 1975. - 22. U.S. Department of Interior, Geological Survey, Tacoma, Washington, Personnel Communication, 1986. - 23. U.S. Department of the Army, Corps of Engineers, "Green River Flood Reduction Study: Appendix E, Section 1—Hydrology," 1984. - 24. U.S. Department of the Army, Corps of Engineers, Seattle District, "Maximum Annual Peak Frequency Curve, Green River Near Auburn," January, 1981; "Maximum Annual Peak Discharge Frequency Curve, Green River at Tukwila," January 14, 1986. - 25. King County Department of Public Works, "Green River Management Agreement," 1985. - 26. King County Department of Public Works, Surface Water Management, Operation and Maintenance Division "Personal Communication P1 Pump Station Operation," September and December 1986. - 27. U.S. Department of Interior, Geological Survey, "Peak Flows from Drainage Areas in Washington," by J.H. Bartells and G.T. Higgins, July 1966. - 28. U.S. Department of the Army, Corps of Engineers, Seattle District, <u>Flood Insurance Study-King County</u>, <u>Washington (Unincorporated Areas)</u>, Seattle, Washington, March 1978. - 29. Issaquah Environmental Council, "Aerial Photographs and Videotape of November 24, 1986 Flood Event, Issaquah,
Washington," January 6, 1986. - 30. U.S. Department of Agriculture, Soil Conservation Service, Watershed Work Plan, Appendix A, Preliminary Plans Structural Measures East Side Green River Watershed King County, Washington," April 1965. - 31. U.S. Water Resources Council, "A Uniform Technique for Determining Flood Flow Frequencies," Bulletin 15, December 1967. - 32. U.S. Department of the Interior, Geological Survey, "Program G745: Flood Flow Frequency Analysis," Olympia, Washington, October 1985. - 33. U.S. Department of the Interior, Geological Survey, Office of Water Data Coordination, Bulletin #17B, "Guidelines for Determining Flood Flow Frequency," Revised September 1982. - 34. U.S. Department of the Interior, Geological Survey, "Evaluation and Design of a Streamflow-Data Network in Washington," Open-File Report 78-167, by M.E. Moass and W.L. Haushild, Tacoma, Washington, 1978. - 35. U.S. Department of the Army, Corps of Engineers, Hydrologic Engineering Center, "HEC-1 Hydrograph Package Users Manual," Computer Program 723-X6-12010, Revised January 1985. - 36. Seattle Engineering Department, Office for Planning, Sewer and Drainage Planning Rain Gaging Program, "Storm Summaries for Storm of January 17-18, 1986 and Hourly and Daily Rainfall Totals (Stations 1, 2, 4, 5, 14, 15, 17)," January 1986. - 37. City of Kent, URS Engineers Matrix Management Group, "City of Kent Surface Drainage Utility Drainage Master Plan," February 1984. - 38. U.S. Department of the Army, Corps of Engineers, Flood Plain Management Division, "Green River Interior Runoff Test File, HEC-1 Program Run for Basin E, 100-Year Event," September 1981. - 39. U.S. Department of Agriculture, Soil Conservation Service, "Fast Side Green River Watershed: Design Discharges—P1 Channel," April 1980. - 40. U.S. Department of the Army, Corps of Engineers, <u>Backwater Channel Capacity Study</u>, R.M. 0.0 to R.M. 28, White River, Auburn, Washington, November 25, 1974. - 41. U.S. Department of Agriculture, Soil Conservation Service, Engineering Division, Technical Release No. 20, Computer Program for Project Formulation Hydrology, May 1965. - 42. U.S. Department of Interior, Geological Survey, Open-File Report 74-336, Magnitude and Frequency of Floods in Washington, Tacoma, Washington, 1975. - 43. Stevens, Thompson and Runyan, Inc., "Sea-Tac Communities Plan, Port of Seattle," August 1974. - 44. CH2M HILL, Inc., Contour Maps, Scale 1:1,200, Contour Interval 2 feet, Normandy Park 1963. - 45. King County Engineering Department, <u>1953 Aerial Topographic Survey</u> (Sheets 1 and 2), Scale 1:4,800, Contour Interval 10 feet: Bothell, Washington (1953). - 46. U.S. Department of the Army, Corps of Engineers, <u>Topographic Maps</u>, Scale 1:2,400, Contour Interval 2 feet: Auburn, Washington (1984). - 47. U.S. Department of the Army, Corps of Engineers, <u>Ortho-Photogrammetric Mapping</u>, <u>Snohomish River Basin</u>, <u>Washington</u>, Scale 1:12,000: Seattle, Washington, June 7, 1975 (revised 1979). - 48. CH2M HILL, Inc., <u>Aerial Photographic Mosaic</u>, <u>North Bend, Washington</u>, Scale 1:4,800, Washington, Photographed October 5, 1977. - 49. CH2M HILL, Inc., <u>Composite Mapping of North Bend, Washington</u>, Scale 1:4,800, Contour Interval 2 feet, October 5, 1977. - 50. U.S. Department of the Army, Corps of Engineers, "Topographic Maps of the Green River and Vicinity," Scale 1:1,200, Reduced to 1:4,800, Contour Interval 2 Feet, 1980. - 51. Norman Associates, Inc., Topographic Maps, Scale 1:1,200, Contour Interval 2 feet, 1977. - 52. U.S. Department of the Interior, Geological Survey, Geological Survey Open-File Report No. 76-499, Computer Applications for Step Backwater and Floodway Analysis, User's Manual No. 76-499, Reston, Virginia, 1976. - 53. American Concrete Pipe Association, <u>Concrete Pipe Design Manual</u>, Arlington, Virginia, February 1974. - 54. Portland Cement Association, <u>Handbook of Concrete Culvert Pipe Hydraulics</u>, Chicago, Illinois, 1964. - 55. University of California at Berkeley, <u>Street and Highway Drainage Volume 2</u> Design Charts, Berkeley, California, November 1969. - 56. Washington State Highway Commission, Department of Highways, <u>Highway Hydraulics Manual</u>, Olympia, Washington, 1972. - 57. U.S. Department of the Army, Corps of Engineers, Seattle District, Computer Program G37322110, <u>Backwater Curve Method II-With Floodway Analysis</u>, Seattle, Washington. - 58. U.S. Department of the Army, Corps of Engineers, Hydrologic Engineering Center, "HEC-2 Water Surface Profiles, Users Manual," Davis, California, September 1982. - 59. U.S. Department of the Army, Corps of Engineers, Coastal Engineering Research Center, "Shore Protection Manual," Fort Belvoir, Virginia, 1973. - 60. U.S. Department of the Army, Corps of Engineers, Letter to FEMA, "Green River Levee Freeboard Recommendations," September 1986. - 61. U.S. Department of the Army, Corps of Engineers, Coastal Engineering Research Center (CETA 78-2), Revised Wave Runup Curves for Smooth Slopes, July 1978. - 62. U.S. Department of the Army, Corps of Engineers, Coastal Engineering Research Center (CETA 79-1), Wave Runup on Rough Slopes, July 1979. - 63. Jones and Associates, Inc., "Renton Village Company—1981 Aerial Mapping," Scale 1:600, Reduced to 1:1,200, Contour Interval 1 Foot, September 1981. - 64. U.S. Department of the Army, Corps of Engineers, "Topographic Maps of the Green River and Vicinity," Scale 1:1,200, Reduced to 1:4,800, Contour Interval 2 Feet, 1980. - 65. CH2M HILL, Inc., "Topographic Maps" Scale 1:4,800, Contour Interval 4 Feet, Big Soos Creek (1986), Bear Creek (1986), Swamp Creek (1986), May Creek (1986), Little Bear Creek (1986), Issaquah Creek (1986), Raging River (1986), Thornton Creek (1986), Longfellow Creek (1986), Cedar River (1986). - 66. Kings County Engineering Department, <u>River Valley Topography</u>, Scale 1:2,400, Contour Interval 10 feet, Flood Control Division, Seattle, Washington, December 1961. - 67. U.S. Department of the Interior, Geological Survey, <u>Topographic Photo Maps</u>, Scale 1:2,400, Contour Interval 5 feet: City of Bellevue, Washington, 1970. - 68. King County Engineering Department, Flood Control Division, <u>River Valley Topography</u>, Scale 1:2,400, Contour Interval 5 feet: Seattle, Washington, December 1961. - 69. King County Department of Public Works, Division of Hydraulics, <u>Topographic Maps, Southwestern King County, Washington</u>, Scale 1:2,400, Contour Interval 5 feet, June 1974. - 70. Harry P. Jones and Associates, <u>Topographic Maps</u>, Scale 1:2,400, Contour Interval 5 feet: Kirkland, Washington (1967). - 71. King County Engineering Department, Aerial Photography, Scale 1:2,400, Contour Interval 5 feet: Sections 3, 4, 9, and 10. T26N, RAE, WM, King County, Washington (1958), Revised (1965). - 72. CH2M HILL, Inc., <u>Contour Maps</u>, Scale 1:1,200, Contour Interval 2 feet, Normandy Park, 1963. - 73. U.S. Department of the Army, Corps of Engineers, <u>Topographic Mapping of North Bend, Washington</u>, Scale 1:2,400, Contour Interval 2 feet: Seattle, Washington (1978). - 74. U.S. Department of the Army, Corps of Engineers, Topographic Maps, Scale 1:4,800, Contour Interval 5 feet: Pacific, Washington (1974). - 75. Aerial Mapping Company, <u>Topographic Maps</u>, 1:2,400, Contour Interval 5 feet: Renton, Washington (1968). - 76. Harstad Associates, Inc., <u>Topographic Maps</u>, Scale 1:2,400, Contour Interval 5 feet: Town of Skykomish, Washington (June 1979). - 77. U.S. Department of the Army, Corps of Engineers, <u>Topographic Mapping</u>, Scale 1:2,400, Contour Interval 2 feet: Snoqualmie, Washington (1978). - 78. Walker and Associates, <u>Topographic Map</u>, Scale 1:2,400, Contour Interval 5 feet: Tukwila, Washington (1974). - 79. U.S. Department of Housing and Urban Development, Federal Insurance Administration, <u>Flood Hazard Boundary Map, King County, Washington</u>, January 17, 1975. - 80. U.S. Department of Housing and Urban Development, Federal Insurance Administration, <u>Flood Hazard Boundary Map, City of Auburn, Washington,</u> Scale 1:4,800, February 18, 1977. - 81. Federal Emergency Management Agency, Federal Insurance Administration, Flood Hazard Boundary Map, City of Bellevue, King County, Washington, August 2, 1974; revised August 13, 1976. - 82. Federal Emergency Management Agency, Federal Insurance Administration, Flood Hazard Boundary Map, City of Kent, King County, Washington, April 22, 1977. - 83. U.S. Department of Housing and Urban Development, Federal Insurance Administration, <u>Flood Hazard Boundary Map</u>, City of Kirkland, Washington, September 12, 1975. - 84. U.S. Department of Housing and Urban Development, Federal Insurance Administration, Flood Hazard Boundary Map, City of North Bend, Washington, Scale 1:9,600, May 7, 1976. - 85. U.S. Department of Housing and Urban Development, Federal Insurance Administration, <u>Flood Hazard Boundary Map, City of Pacific, King County, Washington</u>, Scale 1:9,600, December 26, 1975. - 86. U.S. Department of Housing and Urban Development, Federal Insurance Administration, <u>Flood Hazard Boundary Map, City of Renton, King County, Washington</u>, Scale 1:9,600, June 7, 1974. - 87. U.S. Department of Housing and Urban Development, Federal Insurance Administration, Flood Hazard Boundary Map, Town of Skykomish, King County, Washington, Scale 1:6,000, February 14, 1975. - 88. U.S. Department of Housing and Urban Development, Federal Insurance Administration, <u>Flood Hazard Boundary Map</u>, <u>City of Snoqualmie</u>, <u>Washington</u>, Scale 1:7,300, December 21, 1973. - 89. U.S. Department of Housing and Urban Development, Federal Insurance Administration, Flood Hazard Boundary Map, City of Tukwila, Scale 1:12,000, May 24, 1974 (Revised September 13, 1977). - 90. Federal Emergency Management Agency, Federal Insurance Administration, Flood Insurance Rate Map, City of Seattle, Washington, July 19, 1977. - 91. Federal
Emergency Management Agency, Federal Insurance Administration, Flood Insurance Rate Map, Town of Black Diamond, Washington, October 30, 1979. - 92. Federal Emergency Management Agency, Federal Insurance Administration, Flood Insurance Study, City of Bothell, Washington, unpublished. - 93. Federal Emergency Management Agency, Federal Insurance Administration, Flood Insurance Study, Town of Milton, Washington, February 17, 1982. - 94. Federal Emergency Management Agency, <u>Flood Insurance Study</u>, <u>King County and Incorporated Areas</u>, revised September 29, 1989. - 95. Northwest Hydraulic Consultants, Inc., Miller Creek Regional Stormwater Detention Facilities Design Hydrologic Modeling, Report for King County Division of Surface Water Management, Seattle, Washington, November 1990. - 96. U.S. Environmental Protection Agency, <u>Hydrologic Simulation Program FORTRAN (HSPF)</u>, USEPA Environmental Research Laboratory, Athens, Georgia, 1988. - 97. U.S. Department of the Army, Corps of Engineers, Hydrologic Engineering Center, <u>HEC-2 Water-Surface Profiles Generalized Computer Program</u>, Davis, California, September 1990. - 98. U.S. Department of the Interior, Geological Survey, <u>Roughness Characteristics of Natural Channels</u>, U.S. Geological Survey Water Supply Paper 1849, Denver, Colorado, 1987. - 99. Chow, V.T., Open-Channel Hydraulics, McGraw-Hill Book Company, Inc., New York, 1959. - 100. Harper Righellis, Inc., <u>King County Flood Boundary Work Map</u>, Scale 1:2,400, Contour Interval 2 feet, December 20, 1993. - 101. Hugh G. Goldsmith & Associates, Inc., <u>Klahanie South Final Master Drainage</u> <u>Plan Update</u>, prepared for Lowe Enterprises Northwest, Inc., March 1992. - 102. Dinacola, R.S., <u>Characterization and Simulation of Rainfall-Runoff Relations</u> for Headwater Basins in Western King and Snohomish Counties, Washington, U.S. Geological Survey, Water Resources Investigations Report 89-4052, Tacoma, Washington, 1990. - 103. City of Issaquah, <u>Draft Supplemental Environmental Impact Statement for the I-90 Corporate Center and Southeast 56th Street Road Improvements, December 1992.</u> - 104. U.S. Department of the Army, Corps of Engineers, Hydrologic Engineering Center, <u>HEC-2-Water-Surface Profiles</u>, <u>User's Manual</u>, Davis, California, September 1990, Revised February 1991. - 105. U.S. Department of the Interior, Geological Survey, <u>Roughness Characteristics of Natural Channels</u>, Water Supply Paper 1849, U.S. Geological Survey, Denver, Colorado, 1987, Williams, J.R., Pearson, H.E., and Wilson, J.D., <u>Streamflow Statistics and Drainage-Basin Characteristics for the Puget Sound Regions, Washington</u>, Volume II Eastern Puget Sound from Seattle to the Canadian Border, U.S. Geological Survey, Open-File Report 84-114-B, Tacoma, Washington, 1985. - 106. U.S. Department of the Interior, Geological Survey, <u>Guide for Selecting Manning's Roughness Coefficients for Natural Channels and Flood Plains</u>, Water Supply Paper 2339, U.S. Government Printing Office, Washington, D.C., 1989. - 107. Alpha Engineering Group, Inc., <u>Avondale Road Improvement Project</u> (Redmond City Limit to N.E. 132nd Street) <u>Mitigation Plan for Floodplain Impacts</u>, Report for King County Department of Public Works, Bothell, Washington, August 1992. - 108. Entranco Engineers, Inc., <u>Hydrologic Remodeling Report, Bear Creek</u>, Report prepared for King County Surface Water Management Division, Bellevue, Washington, July 1993. - 109. CH2M HILL, Supplemental Information for Request for Letter of Map Revision for Lower Bear Creek, in King County and the City of Redmond, Washington, submitted by the Washington Department of Transportation to King County Department of Public Works and City of Redmond Department of Public Works for their submittal to FEMA, Bellevue, Washington, August 1993. - 110. Land Tech, <u>Hydraulic Study</u>, 100 <u>Year Flood Elevations</u>, <u>Bear Creek</u>, Hydraulic Analysis by G.R. Bob Parrott, Consulting Engineer, Topographic Survey by Jim Hart & Associates, 1986. - 111. CH2M HILL, <u>Analysis of Flood at Bear Creek Project 86-SD-25</u>, Report to City of Redmond Public Works Department, Bellevue, Washington, July 1986. - 112. CH2M HILL and Sajan, Inc., <u>Hydraulic Report and Appendices A through F. SR 520, Old SR 901 Interchange to SR 202</u>, Report for Washington State Department of Transportation, July 1993. - 113. U.S. Department of the Interior, Geological Survey, Water Resources Data Washington Water Year 1986, Water-Data Report WA-86-1, prepared by McGavock, E.H., Wiggins, W.D., Boucher, P.R., Blazs, R.L., Reed, L.L., and Smith, M.L., in cooperation with the State of Washington and other agencies, Water Resources Division, Pacific Northwest District, U.S. Geological Survey, Tacoma, Washington, 1988. - 114. Chow, V.T., <u>Open-Channel Hydraulics</u>, McGraw-Hill Book Company, Inc., New York, 1959. - 115. Montgomery Water Group, Inc., <u>Letter of Map Revision for Lower Bear Creek at Redmond Town Center, City of Redmond, WA</u>, Kirkland, Washington, July 1994, revised November 1994. - 116. Montgomery Water Group, Inc., <u>Redmond Town Center LOMR Supplemental Information</u>, Report to City of Redmond Stormwater Division to satisfy the Appendix M requirements of the Community Development Guide, Kirkland, Washington, November 1994. - 117. Montgomery Water Group, Inc., <u>Letter of Map Revision and Conditional Letter of Map Revision for Lower Bear Creek at Redmond Town Center, City of Redmond, WA, Supplemental Information for City of Redmond Community Development Guide, Appendix M, Kirkland, Washington, November 1994, revised May 1994.</u> - 118. Federal Emergency Management Agency, <u>Flood Insurance Study, Snohomish County, Washington and Incorporated Areas</u>, Washington, D.C., November 8, 1999. - 119. U.S. Environmental Protection Agency, Environmental Research Laboratory, <u>Hydrologic Simulation Program-FORTRAN (HSPF); User's Manual for</u> <u>Release 8.0, EPA 600/3-84-066</u>, Athens, Georgia, 1984. - 120. City of Bothell, Department of Public Works, <u>Topographic Map</u>, Scale 1:4,800, Contour Interval 2 feet, Bothell, Washington, 1991. - 121. Northwest Hydraulic Consultants, Inc., North Creek, Bothell, Washington, Limited Map Maintenance Study, Work Map, Scale 1:24,000, Contour Interval 2 feet, undated. - 122. City of Bothell, Engineering Study, Horse Creek Drainage Area, May 1965. - 123. Harper Righellis, Inc., <u>King County Flood Boundary Work Map</u>, Scale 1:2,400, Contour Interval 2 feet, October 17, 1996. - 124. U.S. Department of the Army, Corps of Engineers, Hydrologic Engineering Center, <u>HEC-REGFRQ</u>, <u>Regional Frequency Computation</u>, <u>Computer Program</u>, Davis, California, September 1989. - 125. U.S. Department of the Army, Corps of Engineers, Hydrologic Engineering Center, <u>HEC-FFA</u>, Flood Frequency Analysis, Computer Program, Version 3.1, Davis, California, February 1985. - 126. Harper Righellis, Inc., <u>King County Flood Boundary Work Map</u>, Scale 1:2,400, Contour Interval 2 feet, March 31, 1997. - 127. U.S. Department of the Army, Corps of Engineers, Seattle District, <u>Draft Detailed Project Report and Environmental Assessment for the Snoqualmie River at Snoqualmie Flood Damage Reduction Study in King County, Washington</u>, January 1999, (draft). - 128. Harper Righellis, Inc., <u>South Fork Snoqualmie River, Hydrology and Hydraulics Report</u>, Prepared for King County, Surface Water Management Division, March 13, 1997. - 129. Harper Houf Righellis Inc., Technical Support Data Notebook for the Cities of North Bend and Snoqualmie and King County, Washington, <u>Upper Snoqualmie Flood Plain Flood Insurance Study</u>, October 21, 2001. - 130. URS Greiner Woodward Clyde, <u>Tollgate Final Environmental Impact Statement Report</u>, Vol. 1 and 2, June 1, 2000. - 131. U.S. Department of the Army, Corps of Engineers, Hydrologic Engineering Center, <u>HEC-RAS</u>, <u>River Analysis System</u>, Computer Program, Version 2.2, Davis California, September 1998. - 132. Harper Houf Righellis Inc., <u>Upper Snoqualmie Floodplain Flood Insurance Study Work Maps</u>, Scale 1:2,400, October 2001. - 133. U.S. Oceanic and Atmospheric Administration, National Geodetic Survey, <u>Vertcon Conversion Program</u>, Version 6.0.1, 2006. - 134. Montgomery Water Group, Inc. Revisions to FEMA Flood Insurance Study, Issaquah Creek and East Fork Task 5 Memorandum Hydrology Update to April 28, 2000, Memo to Kerry Ritland, City of Issaquah, May 24, 2001. - 135. King County, City of Issaquah, and Washington State Department of Ecology, Issaquah Creek Basin Current/Future Condition and Source Identification Report, King County Surface Water Management Division Department of Public Works, City of Issaquah Department of Public Works, Washington State Department of Ecology Water Quality Financial Assistance Program. Seattle, Washington, October 1996. - 136. U.S. Department of the Army, Corps of Engineers, Hydrologic Engineering Center, FEC-FFA Version 3.1. Davis, California, February 1995. - 137. U.S. Department of the Interior, Office of Water Data Coordination, Geological Survey, <u>Guidelines for Determining flood Flow Frequency Bulletin 17 B</u>, Revised September 1981. - 138. U.S. Department of the Interior, Geological Survey, <u>Magnitude and Frequency of Floods in Washington</u>. Water-Resources Investigations Report 97-4277, 1998. - 139. Montgomery Water Group, Inc., <u>Issaquah Creek FIS Revisions-Lower Mainstem Overflow Analysis Summary</u>, <u>Update to April 20, 2001 Memo to Kerry Ritland</u>, <u>City of Issaquah</u>, May 24, 2001. - 140. U.S. Department of the Army, Corps of Engineers, Hydrologic Engineering Center. <u>HEC-RAS</u>, Version 3.0.1, Davis, California, March 2001. - 141. Montgomery Water Group, Inc., <u>Bridge and Channel Improvements and Status Update</u>, March 20, 2001. - 142. Montgomery Water Group, Inc.,
<u>Issaquah Creek FIS revisions Draft Work Maps</u>, Scale 1:4,800, August 2001. - 143. Hydrologic Engineer Center (HEC), April 2004. HEC-RAS River Analysis System Computer Program, version 3.1.2. - 144. U.S. Department of the Army, Corps of Engineers, 2004. Cedar River at Renton Flood Damage Reduction Operation and Maintenance Manual: Cedar River Section 205 (Renton, Washington). - 145. King County, March 2000. Memorandum re: Flood Frequency Curve for Year 2000 Floodplain Mapping on the Cedar River. David Hartley, Senior Watershed Hydrologist. - 146. U.S. Department of the Army, Corps of Engineers, June 1997. Final Detailed Project Report and Environmental Impact Statement: Cedar River Section 205 (Renton, Washington). - 147. U.S. Department of the Interior, Geological Survey, 1987, <u>Roughness Characteristics of Natural Channels</u>, U.S. Geological Survey Water Supply Paper 1849, USGS, Denver, Colorado. - 148. U.S. Department of Agriculture, Soil Conservation Service, <u>Flood Hazard Analyses</u>, Tolt River, King County, Washington. - 149. U.S. Department of the Interior, Geological Survey, <u>7.5-Minute Series Topographic Maps</u>, Scale 1:24,000, Contour Interval 20 feet, Bothell, Washington, 1953 (Photorevised 1981); Kirkland, Washington, 1950 (Photorevised 1968 and 1973). - 150. U.S. Department of the Army, Corps of Engineers, Hydrologic Engineering Center, HEC-DSS, <u>User's Guide and Utility Manuals</u>, <u>User's Manual</u>, Davis, California, October 1994. - 151. U.S. Department of the Army, Corps of Engineers, Hydrologic Engineering Center, STATS, <u>Statistical Analysis of Time-Series Data, Computer Program</u>, Davis, California, May 1997. - 152. U.S. Department of the Army, Corps of Engineers, Hydrologic Engineering Center, STATS, <u>Statistical Analysis of Time-Series Data, Input Description</u>, Davis, California, May 1987. - 153. U.S. Department of the Army, Corps of Engineers, Hydrologic Engineering Center, <u>HEC-FFA</u>, Flood Frequency Analysis, User's Manual, Davis, California, May 1992. - 154. U.S. Department of the Army, Corps of Engineers, Hydrologic Engineering Center, Regional Frequency, User's Manual, Davis, California, July 1972. - 155. U.S. Department of the Army, Corps of Engineers, Hydrologic Engineering Center, <u>UNET</u>, <u>One-Dimensional Unsteady Flow Through a Full Network of Open Channels, Computer Program, Version 3.2.0</u>, Davis, California, August 1997. - 156. U.S. Department of the Army, Corps of Engineers, Hydrologic Engineering Center, <u>HEC-RAS</u>, <u>River Analysis System</u>, <u>User's Manual</u>, <u>Version 2.0</u>, Davis, California, April 1997. - 157. U.S. Army Corps of Engineers, Hydrologic Engineering Center, <u>HEC-RAS</u>, <u>River Analysis System</u>, <u>Hydraulic Reference Manual</u>, <u>Version 2.0</u>, Davis, California, April 1997. - 158. U.S. Department of the Army, Corps of Engineers, Hydrologic Engineering Center, <u>HEC-RAS</u>, <u>River Analysis System</u>, <u>Application's Guide</u>, <u>Version 2.0</u>, Davis, California, April 1997. - 159. King County, Surface Water Management Division, Basin Planning Program Sediment Transport Along the South Fork and Mainstem of the Snoqualmie River, June 1991. - 160. Converse Consultants, NW, Report on Geotechnical Services, Snoqualmie Falls Hydroelectric Project, Snoqualmie, Washington, Prepared for Puget Sound Power and Light Company, October 1991. - 161. Horton Dennis and Associates, Inc., <u>South Fork Snoqualmie River, Aerial Mapping and Flood Plain Analysis, King County Surface Water Management, Harper Righellis, Inc., Temporary Benchmarks</u>, August 1995. - 162. Northwest Hydraulics, Inc., <u>Snoqualmie River Flood Control Project</u>, <u>Pre-Feasibility Investigation Final Report</u>, Prepared for King County, Surface Water Management Division, March 1996. - 163. King County, Surface Water Management Division, <u>Environmental</u> Assessment, Reif Road Project, FEMA DR-833-WA, May 24, 1996. - 164. King County, Department of Public Works, Surface Water Management Division, River Management Section, <u>Reif Road Flood Hazard Reduction Project, Design Report</u>, Draft, July 31, 1995. - 165. King County, Engineering Department, Flood Control Division, <u>Snoqualmie River Valley Topography</u>, Scale 1:2,400, Contour Interval 5 feet, December 1961. - 166. U.S. Geological Survey, <u>North Bend, Washington 7.5-Minute Quadrangle Map</u>, Scale 1:24,000, Contour Interval 40 feet, 1993. - 167. U.S. Department of the Interior, Geological Survey, <u>Snoqualmie</u>, <u>Washington 7.5-Minute Quadrangle Map</u>, Scale 1:24,000, Contour Interval 20 feet, 1953, Photorevised 1968. - 168. Montgomery Water Group, Inc., <u>Preliminary Review Draft, Tollgate EIS, Hydraulics Model Study of South Fork Snoqualmie River and Gardiner Creek</u>, September 1997. - 169. Montgomery Water Group, Inc., <u>Appendix, Hydraulic Modeling Analysis of South Fork Snoqualmie River and Gardiner Creek</u>, Tollgate Preliminary Draft EIS, December 1997. - 170. Montgomery Water Group, Inc., <u>Middle Fork Snoqualmie River Overflow Work Map</u>, November 1997. - 171. King County, Surface Management Division, <u>Preliminary Work Maps for</u> Middle Fork Snoqualmie River, Prepared by Harper Righellis, Inc. - 172. U.S. Department of the Army, Corps of Engineers, Seattle District, Snoqualmie River Flood Insurance Study Drawings, 1971. - 173. City of Issaquah. 2000. <u>City of Issaquah Comprehensive Plan</u>. Adopted 1995 and amended in 2000. City of Issaquah Planning Department, Issaquah, Washington. - 174. Federal Emergency Management Agency. September 29, 1989. <u>Flood Insurance Study for King County, Washington and Incorporated Areas</u>. FEMA Region X. - 175. King County and Issaquah/East Lake Sammamish Watershed Management Committee. December 1996. <u>Final Issaquah Creek Basin and Nonpoint Action Plan</u>. King County Department of Natural Resources, Seattle, Washington. - 176. Montgomery Water Group, Inc. September 25, 2001. <u>FEMA FIS Elevation and Discharge Comparison Memorandum.</u> - 177. Montgomery Water Group. April 30, 1996. <u>Preliminary Hydraulic Modeling Analysis of Issaquah Creek for Proposed Basin Flood Control Program</u>. Prepared for RH2 Engineering, Inc., and City of Issaquah Public Works Department. Kirkland, Washington. - 178. Montgomery Water Group, Inc. (2003). "Kelsey Creek Center Redevelopment at Kelsey Creek Center". LOMR Case No. 03-10-0399P. Prepared for Franklin West L.P. November 5. - 179. Federal Emergency Management Agency (1995) "Flood Insurance Study of King County and Unincorporated Areas" - 180. Northwest Hydraulic Consultants, Inc., (2002). "Hydrologic Study of Kelsey Creek Basin". Prepared for City of Bellevue Utility Department. December. - 181. U.S. Department of the Army, Corps of Engineers, Hydrologic Engineering Center. (2004) Corpscon, Version 6.0.1. - 182. U.S. Department of the Army, Corps of Engineers, Hydrologic Engineering Center. (2005) HEC-RAS River Analysis System Computer Program, Version 3.1.3. # 10.0 REVISION DESCRIPTIONS This section has been added to provide information regarding significant revisions made since the original Flood Insurance Study was printed. Future revisions may be made that do not result in the republishing of the Flood Insurance Study report. To assure that any user is aware of all revisions, it is advisable to contact the community repository of flood hazard data located at the Department of Land and Water Resources, 201 South Jackson Street, Suite 600, Seattle, Washington 98104-3855 and at the Department and Environmental Services, 900 Oaksdale Avenue Southwest, Renton, Washington 98057. #### 10.1 First Revision The purpose of this revision is to update the corporate limits of the City of Bothell and to add floodplain information for Miller Creek that affects the unincorporated areas of King County, Washington (Reference 94), and then incorporated Cities of Normandy Park (Reference 11) and SeaTac. Approximately 4 miles of Miller Creek were studied by detailed methods. The revised floodplain along North Creek shown within the City of Bothell is for information only. For flood insurance purposes, refer to the separately published Flood Insurance Rate Map. Detailed information regarding this revision is presented throughout the main body of this FIS report. The information for this restudy of Miller Creek supersedes the data presented in the previous Flood Insurance Study for King County, dated September 29, 1989 (Reference 94). The discharges used in this study of Miller Creek were revised to account for the effects of urbanization and operations of the newly constructed Lake Reba Detention Pond. This restudy was completed in September 1991. ## 10.2 Second Revision This study was revised on May 16, 1995, to incorporate the results of an analysis of existing hydraulic studies that was performed for the Snoqualmie River in the vicinity of the City of Snoqualmie. The analysis was performed by nhc, the study contractor, for FEMA under Contract No. EMW-90-L-3134, as part of its Limited Map Maintenance Program, (LMMP). In addition to the analysis for existing hydraulic studies that was performed for the Snoqualmie River, this revision also identifies that the mapping for King County has been prepared using digital data. Previously published Flood Insurance Rate Map data produced manually have been converted to vector digital data by a digitizing process. These vector data were fit to raster digital images of the USGS quadrangle maps of the county area to provide horizontal positioning. Road, highway names, and centerline data have been obtained from an enhanced TIGER (Topologically Integrated Geographic Encoding and Referencing) File, obtained through the King County Computer and Communications Services Division. For county areas outside of the City of Seattle, the centerlines were modified to the positional accuracy of the USGS quadrangle maps, and the roads,
highways, and street names, if needed, were taken from the Flood Insurance Rate Map panels, where appropriate. The adjusted centerline data were then computer plotted with the digitized floodplain data to produce the countywide Digital Flood Insurance Rate Map panels. Several additional incorporated areas have been identified in this update. They are the Cities of Algona, Burien, Bothell, Federal Way, Hunts Point, Medina, Mercer Island, Woodinville, and Yarrow Point and the Town of Clyde Hill and Beaux Arts Village. The LOMR issued on December 18, 1990, for the City of North Bend, to show the effects of more detailed hydrologic/hydraulic information along the Snoqualmie River, was included in this update. As a result of more detailed hydrologic/hydraulic information, the floodway was revised along the Snoqualmie River throughout the corporate limits of the City of North Bend. The LOMR issued on May 13, 1992, for the unincorporated areas of King County, to show the effects of more detailed topographic information adjacent to the Sammamish River, was included in this update. As a result of the more detailed topographic information, the 1-percent-annual-chance floodplain boundary was revised to exclude the K & S Business Park from the 1-percent-annual-chance floodplain. The LOMRs issued on April 28, 1994, for the City of Redmond and the unincorporated areas of King County, to show the effects of more detailed hydrologic/hydraulic information along Bear Creek, were included in this update. As a result of the more detailed hydrologic/hydraulic information, the Flood Insurance Rate Map was revised to modify elevations, floodplain and floodway boundary delineations, and zone designations along Bear Creek from its confluence with the Sammamish River to State Highway 202 (Redmond Way). In addition, a Flood Profile Panel was included for the Bear Creek Overflow Channel. ### 10.3 Third Revision This study was revised on May 20, 1996, to incorporate the results of detailed hydrologic and hydraulic analyses of the Raging River affecting King County, Washington. The revised analyses for the reach of the Raging River from its confluence with the Snoqualmie River to approximately 0.6 mile upstream of Interstate Highway 90 (I-90) (downstream reach) were performed by Harper Righellis, Inc., Portland, Oregon, for the King County Surface Water Management Division. The revised analyses for the reach from approximately 0.6 mile upstream of I-90 to approximately 0.3 mile upstream of the second Upper Preston Road bridge (upstream reach) were performed by FEMA. This work was completed in March 1995. Detailed information regarding this revision is presented throughout the main body of this FIS report. #### 10.4 Fourth Revision This study was revised on March 30, 1998, to incorporate the results of detailed hydrologic and hydraulic analyses of North Fork Issaquah Creek in the City of Issaquah, Bear and Evans Creeks in the City of Redmond, South Fork Skykomish River in the Town of Skykomish and the unincorporated areas of King County, and the Middle and North Fork Snoqualmie Rivers in the unincorporated areas of King County. This study also incorporates the results of an approximate analysis of Tate Creek in the unincorporated areas of King County. Detailed information regarding this revision is presented throughout the main body of this FIS report. #### 10.5 Fifth Revision This study was revised on November 8, 1999, to incorporate the Flood Insurance Study information and data for the City of Bothell into the Flood Insurance Study report for King County, Washington and Incorporated Areas. The City of Bothell is located in the Puget Sound region of northwestern Washington, approximately 3.5 miles northeast of the City of Seattle. The City of Bothell is a bi-county community within King and Snohomish Counties. Because the Flood Insurance Rate Map and Flood Insurance Study report for Snohomish County, Washington and Incorporated Areas is being published in a countywide format (Reference 118), the portions of the City of Bothell that lie within King County are included on the Flood Insurance Rate Map for King County, and the portions of the City of Bothell that lie within King County are included on the Flood Insurance Rate Map for King County, and the portions of the City of Bothell that lie within Snohomish County are included on the Flood Insurance Rate Map for Snohomish County. Detailed information regarding this revision is presented throughout the main body of this FIS report. This study has also been revised to incorporate Letters of Map Revision (LOMRs) issued on March 3, 1995 (Case Nos. 94-10-053P and 94-10-067P), and July 5, 1995 (Case No. 95-10-41P). The March 3, 1995, LOMR revised Flood Insurance Rate Map Panel 0007 C, dated March 2, 1994, to show the effects of a private flood protection system along North Creek from just upstream of I-405 to just downstream of Monte Ville Parkway. ## 10.6 Sixth Revision This study was revised on December 6, 2001, to incorporate the results of detailed hydrologic and hydraulic analyses of the Tolt River in the Town of Carnation and the unincorporated areas of King County; and the South Fork Snoqualmie River from I-90 to approximately 4,000 feet upstream of 468th Avenue. Detailed information regarding this revision is presented throughout the main body of this FIS report. The restudy for the South Fork Snoqualmie River covers the mainstem of the Snoqualmie River from Meadowbrook Bridge to the confluence of the Middle and South Fork. The hydraulic analysis of the South Fork Snoqualmie River upstream of I-90 was initially performed by Harper Righellis, Inc., Portland, Oregon, for the King County Surface Water Management Division. The data prepared by Harper Righellis were incorporated into the analysis performed by the USACE and revised where necessary. The USACE restudy was requested because the USACE, Seattle District, determined that the levees on the South Fork do not meet FEMA's current standards for providing protection from the 1-percent-annual-chance flood. #### 10.7 Seventh Revision This FIS was revised on April 19, 2005, to incorporate the results of revised hydraulic analysis of Snoqualmie River main stem, South Fork and Middle Fork of the Snoqualmie River, performed by Harper Houf Righellis Inc., completed in October 2001. This revision affects the Cities of North Bend and Snoqualmie, and the unincorporated areas of King County, Washington. In addition, this revision will incorporate the results of a revised hydrologic and hydraulic analysis of Issaquah Creek, East Fork Issaquah Creek, and Gilman Boulevard Overflow of Issaquah Creek, performed by Montgomery Water Group Inc., completed in August 2001. This revision affects the City of Issaquah, and the unincorporated areas of King County, Washington. This revision will incorporate the results of a revised hydraulic analysis of Tibbetts Creek performed by Concept Engineering, Inc. This revision affects the City of Issaquah, and the unincorporated areas of King County, Washington. Detailed information regarding this revision is presented throughout the main body of this FIS report. #### **Tibbetts Creek LOMR** The LOMR issued on February 23, 2005, for the City of Issaquah and the unincorporated areas of King County, to show the hydraulic effects of the channel relocation and fill along Tibbetts Creek, was included in this update. As a result of the channel relocation, fill and more detailed topographic information, the Flood Insurance Rate Map, Flood profiles, and Floodway Data tables were revised to modify elevations, floodway data, and floodplain and floodway boundary delineations along Tibbetts Creek from approximately 150 feet upstream of I-90 (eastbound) to approximately 700 feet downstream of Newport Way Northwest. ## 10.8 Eighth Revision This FIS was revised on {date to be determined}, to incorporate the results of revised hydraulic analysis of Cedar River, Paterson Creek, Snoqualmie River, and Springbrook Creek. In addition, this revision converts all NGVD29 elevations to NAVD88. All elevations shown on the Flood Insurance Rate Map, Flood Profiles, and Floodway Data tables are referenced to NAVD88. Refer to section 3.3 Vertical Datum for a more detailed explanation of the datum conversion including datum conversion factors used for King County. **Cedar River Study** - The purpose of this revision is to prepare a flood study of Cedar River. The revised floodplain and floodway maps will reflect the current hydraulic and hydrologic conditions of the rivers and will replace the effective maps which were prepared prior to the 1980s. The hydrologic and hydraulic analyses for this study were prepared by nhc for the City of Renton. Agencies contacted for information relevant to this study included: the City of Renton, King County Department of Natural Resources-Water and Land Resources Division, and the United States Army Corps of Engineers-Seattle District (USACE). This report describes an investigation of riverine flooding along the Cedar River within the city of Renton, Washington. The study reach begins at the river outlet at Lake Washington and extends 5.36 miles upstream to the Renton City Limits at 149th Avenue Southeast and extends to Landsburg Road crossing in the unincorporated area of the King County. The purpose of this study is to update the existing FEMA Flood Insurance Study (FIS) for King County, Washington and Incorporated Areas (FEMA, November 1999) to reflect current hydraulic conditions along the Cedar River using higher revised peak discharges and updated geometry Kelsey Creek - The upstream limit of the Kelsey Creek study reach begins just upstream of the culvert crossing of NE 6th Street, west of 148th Avenue NE at Cross Section AQ. The floodplain both upstream and downstream of this crossing consists of a wide, undeveloped wetland area. Floodplain widths range from approximately 200 to 600 feet Downstream, Kelsey
Creek crosses NE 8th Street through a culvert into Kelsey Creek Regional Pond 133, located northeast of the corner of 148th Avenue NE and NE 8th Street. Pond elevation and discharge controlled by a weir/culvert structure located just downstream of Cross Section AO. Overtopping of the control structure is not expected during the 1-percent-annual-chance event, and the floodplain is confined to the vegetated corridor both upstream and downstream. Downstream, the floodplain remains within the channel corridor with widths varying from 30 to 65 ft. Flooding of low-lying areas of a few residential parcels upstream of the 148th Avenue NE culverts is expected, but water levels do not reach buildings or other structures. Overtopping the 148th Avenue NE roadway is not expected as it is substantially elevated. Downstream of the 148th Avenue NE culverts, Kelsey Creek enters a steep, forested ravine-like corridor. Flooding is contained within the banks of the narrow channel with widths varying from 15 to 45 feet. This reach continues downstream for approximately 0.5 mile until it encounters a series of culverts at the Illahee Apartment Complex. Here, backwater caused by the driveway embankment and culvert group is expected to flood the floor level units on the right bank. Downstream of the Illahee Apartments to 140th Avenue NE, flooding is contained within the vegetated channel corridor. The confluence with the first major tributary to Kelsey Creek is Valley Creek. Overtopping of the 140th Avenue NE Bridge is not expected. Downstream of 140th Avenue NE, Kelsey Creek flows adjacent to Bel-Red Road and commercial properties. Along this reach the stream is confined within a channelized corridor and is crossed by several driveway bridges. These bridges are elevated well above the computed 1-percent-annual-chance flood profile, thus they have no impact on flood levels. Floodplain widths range from 15 to 55 feet. The Kelsey Creek diverges from Bel-Red Road, turns southwesterly, and enters a reach surrounded by office and apartment buildings. Several bridges and culverts located along the reach adequately convey flow with the exception of the office park driveway bridge; overtopping of this structure is expected during the 1-percent-annual-chance event. Flood levels are not expected to encroach on any structures in this reach as the floodplain remains relatively confined to the channel corridor with widths varying from 15 to 45 feet. Continuing downstream, Kelsey Creek meanders through a winding, but still entrenched, vegetated corridor, flanked by residential parcels. The floodplain remains confined to the corridor with widths varying from 15 to 70 feet. Upstream of the NE 8th Street culvert, the floodplain expands over the right bank to inundate an adjacent pond area. Floodplain widths in this short reach range from 60 to 200 ft; however, nearby residential structures remain outside the inundation limits. A grade control structure consisting of a series of concrete weirs is located immediately upstream of the NE 8th Street culvert (near 132nd Av NE). At this structure it was assumed flow would transition from sub-critical to super-critical, thus be critical, at the upstream crest of the structure. Downstream of NE 8th Street, Kelsey Creek enters the Glendale Golf Course. Along the first 0.6 miles of this reach the channel is steep and entrenched. Several small pedestrian bridges cross the stream, but most are elevated above the computed flood profile thus they generally have no significant impact. In addition, there are several groups of concrete grade control structures located in the channel; these structures were modeled as inline weirs in the HEC-RAS model. Flooding along the Kelsey Creek golf course reach remains confined within the channel until where overtopping into the left bank floodplain begins as the channel gradient lessens and the channel becomes less entrenched. The floodplain expands over both the left and right banks with a floodplain width of approximately 200 feet. Downstream of the Glendale Golf Course, Kelsey Creek enters the City of Bellevue's Kelsey Creek Park. Here, the floodplain abruptly transitions from well manicured fairways to a densely vegetated channel corridor. Furthermore, the right floodplain of Kelsey Creek is confined and divided by a pathway and earthen embankment structure from the adjacent swale to the west. As discussed in the previous sections, because these structures are not certified by FEMA, they were not considered to provide flood protection. As a result, it is assumed the embankment does not exist and thus have allowed water to overtop the natural right bank of Kelsey Creek, via lateral weirs, into the adjacent swale to the west. A separate flood profile was computed along the length of the swale feature. In addition, the area in between the swale and main channel of Kelsey Creek was designated as Zone X, because: 1) flooding depth is expected to be less than 1 foot; and 2) accurate BFE's could not be defined due to two-dimensional flow in the area. Beyond the park, Kelsey Creek flows into an expansive wetland area that is confined by the Lake Hills Connector roadway embankment along the south and west boundaries. The confluence with the West Tributary is located about half way into the wetland, and the confluence with Richards Creek occurs further downstream near. Flooding in this area is primarily controlled by a series of culvert/roadway embankments at the Lake Hills Connector and 121st Avenue SE. Overtopping is not expected along 121st Avenue SE or the southbound lanes of the Lake Hills Connector, but floodwaters are expected to overtop the northbound lanes of the Lake Hills Connector. The BFE of floodwaters upstream of the Lake Hills Connector are nearly constant at an elevation of approximately 32.5 ft, NAVD 88. At this elevation, overflow of SE 7th Place (north and east of Lake Hills Connector) into a wetland area to the north of SE 7th Place is expected, but does not contribute conveyance area to the system. Shallow flooding of the northbound lanes of the Lake Hills Connector may also occur along the left bank. At the 1-percent-annual-chance level, flooding over the Lake Hills Connector may be on the order of 1 foot deep and overtopping flows will likely discharge over the roadway to the southwest into Richards Creek. A preliminary HEC-RAS model included lateral weirs to route flow into Richards Creek, but the resulting flow depths were not significantly changed. To accurately define the 1-percent-annual-chance hazard area and BFEs over this portion of the Lake Hills Connector, the effective FIS of Richards Creek, i.e. hydraulic model, may need to be reevaluated. At this time the 1-percent-annual-chance flood hazard area over the Lake Hills Connector has been designated a shaded Zone X (shallow flooding). Downstream of the southbound lanes of Lake Hills Connector, flooding is confined to the wide, wetland corridor, with widths ranging from 200 to 740 f1. Further downstream, at the 121st Avenue SE culverts, Kelsey Creek again becomes entrenched. Flooding here is confined to a vegetated corridor as it passes under the Wilburton Railroad Trestle and finally to the I-405 culverts. Flooding on the order of 12 ft deep is computed upstream of the I-405 culvert, but is well confined by the elevated freeway and adjacent hillsides. **West Tributary of Kelsey Creek -** The West Tributary study reach begins at the northernmost boundary of the Glendale Golf Course. Minor flooding of the left and right bank floodplains occurs along the upper reach, but downstream of the flow expands significantly with widths up to 430 fl. Several small bridges located in the golf course reach of the West Tributary obstruct flow and thus contribute to flooding. Downstream of the golf course, the West Tributary enters Kelsey Creek Park. Flooding in the upper portion of the park is related to the constriction caused by the north parking lot and bridge. Here, flooding is generally contained within the wetland to the north of the parking lot, but some shallow flooding of the lot itself is expected. Downstream of the parking lot, the West Tributary splits with a channel to the west, and a swale-like feature that flows directly south. Although at the 1-percent-annual-chance level the area between the channels is expected to remain dry, it was modeled as single reach because the cross section density and orientations were sufficient to compute reasonable profiles. Further downstream, the West Tributary crosses two pedestrian bridges and elevated pathways. Flood levels in this portion of the park are generally controlled by these structures with a uniform floodplain width of approximately 300 feet. Downstream of Kelsey Creek Park, the West Tributary flows through a densely vegetated corridor and into the wetland and finally joins the main stem of Kelsey Creek. Flow in this area is likely very two-dimensional as the West Tributary expands overbank into the wetland. The 1-percent-annual-chance floodway boundaries developed in this study were determined with the HEC-RAS model, with the general assumption of equal conveyance reduction from each side of the floodplain (HEC-RAS method 4). At a few locations, applying the automatic encroachment feature available in HEC-RAS produced flood elevation increases greater than 1 foot and resulted in an unusual floodway shape. As a result, the encroachments were manually adjusted (HEC-RAS method 1) until a reasonable floodway was established. At many cross sections the floodway boundaries coincide with the top of the channel banks, yet a 1-foot rise is not achieved at these sections. As required by FEMA, the floodway cannot encroach into the active channel; therefore, the rise is limited to something less than 1 foot. However, for mapping purposes, in locations where the floodplain is contained within the active channel banks the floodway is coincident with the floodplain
boundary. Floodway widths were computed at each cross section. Between sections, the floodway boundaries were estimated by first attempting to maintain a relatively uniform width, then adjusting the boundaries to include or exclude topographic features that have a significant effect on flow conveyance. **Patterson Creek -** The purpose of this revision is to prepare a flood study of Patterson Creek. The revised floodplain and floodway maps will reflect the current hydraulic and hydrologic conditions of the rivers and will replace the effective maps which were prepared prior to the 1980s. This study was completed by nhc under contract to King County Department of Natural Resources and Parks (KCDNRP). The County is a Cooperating Technical Partner (CTP) with the Federal Emergency Management Agency (FEMA) for purposes of conducting flood insurance studies. King County provided project management and technical review of all study products. The County also supplied relevant study data including hydrometric data for the Patterson Creek watershed and information on past watershed flooding. **Lower Snoqualmie River Study -** The purpose of this revision is to update the lower Snoqualmie River. The revised floodplain and floodway maps will reflect the current hydraulic and hydrologic conditions of the rivers and will replace the effective maps which were prepared prior to the 1980s. This study was completed for FEMA at the request of King County. The County served as Cooperating Technical Partners (CTP), providing relevant study data, first-hand information on the watersheds and associated flooding issues, and technical review of all study products. King County also served in the role of Project Manager and contracted with nhc to provide technical analyses for the FIS updates. **Springbrook Creek Study** - The purpose of this revision is to update Spingbrook Creek between the Black River Pump Station (BRPS) and SW 43rd Street (also referred to as South 180th Street). The revised floodplain and floodway maps will reflect the current hydraulic and hydrologic conditions of the rivers and will replace the effective maps which were prepared prior to the 1980's. The hydraulic and hydrologic analyses for this study were conducted following the approach described in an earlier memorandum by nhc. This approach was reviewed and approved by the FEMA Map Coordination Contractor in a letter to the City of Renton, dated September 25, 2002. Continuous hydrologic simulation modeling for a 53 year period of record (October 1, 1948 through September 30, 2002) was used to identify and adjust storm inflow hydrographs to Springbrook that correspond to recurrence intervals required for unsteady flow hydraulic modeling and subsequent floodplain mapping. Two types of potential flood generating peak events were identified for hydraulic analysis: a Storage Scenario, which includes events that produce very high water surface elevation at the Black River Pump Station due to pumping restrictions caused by high flows in the Green River, and a Conveyance Scenario which includes events that exhibit maximum peak flows into the pump station forebay. This study was completed in June 2006. **Green River Study** – The Green River floodplain was redelineated from Cross Section N through just upstream of Cross Section CE based on the Green River (Without Levee) regulatory base flood water surface elevations in the King County FIS. The without levee flood water surface elevations were compared to the surrounding topography assuming that levees and levee-type structures would not prohibit water from leaving the river channel. One exception was that the Tukwila 205 levee was considered to provide protection from flooding. Topography data from 2006 was used to perform the comparison. In locations where the 1- and 0.2-percent-annual-chance boundaries coincide, only the 1-percentannual-chance boundary has been delineated on the maps. This includes nearly the entire overbank area where the 1- and 0.2-percent-annualchance floodplains would coincide since maximum water levels in the levee failure scenarios are controlled by the latter half of the flow hydrograph (in the modeling, these areas take several days to reach equilibrium conditions) and flows for this portion of the 1- and 0.2percent-annual-chance hydrographs for the Lower Green River are the same due to the regulation provided at the USACE's Howard A Hanson Dam. In general, the floodway was developed to coincide with the effective Green River floodway to the greatest extent possible. The HEC-RAS model was run to determine if the effective floodway could fully contain the 1-percent-annual-chance flood without causing surcharges in excess of 1 foot relative to the "fail all levee" condition. In areas where the 1-foot surcharge could not be achieved, the overbank portions of the floodway were delineated using the FLO-2D model. Encroachments in the overbank areas were manually defined until a reasonable floodway boundary was established. Floodway widths were computed at each cross section in the HEC-RAS model and the delineation between sections was drawn based on topographic information. At some cross sections, the floodway boundary coincides with the top of the channel banks. The floodway does not encroach into the channel and the floodway along the certified levee near Southcenter (i.e. the Tukwila 205 Levee) was delineated along the landward toe of the levee fill. Floodway data is not provided for portions of the floodway that were analyzed using FLO-2D. In locations where the floodway and the 1-percent-annual-chance floodplain boundary coincide, only the floodway boundary is shown on the map. **Middle Green River** –A Regulatory Floodway was delineated for the Middle Green River using the HEC-RAS model. In general, the floodway was developed using Encroachment Method 4 in HEC-RAS. In locations where the floodway and the 1-percent-annual-chance floodplain boundary coincide, only the floodway boundary is shown on the maps. Method 4 automatically computes encroachment stations by attempting to achieve a predefined surcharge (1 foot) while targeting an equal loss of conveyance on each overbank, if possible. At some locations, applying the automated encroachment computation produced surcharges significantly different from 1 foot and/or resulted in an unreasonable floodway shape. As a result, encroachments in some locations were manually adjusted using HEC-RAS Method 1 until a reasonable floodway boundary was established. At some cross sections, the floodway boundary coincides with the top of the channel banks and the floodway does not encroach into the active channel. Floodway widths were computed at each cross section. Between sections, the floodway boundary was interpolated based on topographic information and to reflect assumed flood flow characteristics. The Mill Creek floodway and storage floodway were preserved and shown on the map. Additionally, the floodway from the Springbrook Creek restudy was shown on the map. Otherwise, Green River floodplain inundation of the Mill and Springbrook Creeks floodplains was shown. The Green River floodplain was shown as an AE-Zone with BFEs.